Citation: | YANG Xinhua, JIA Xin, ZHU Ping, LI He. Analysis of factors affecting fatigue performance of welded joints based on information gain rate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 73-78. DOI: 10.12073/j.hjxb.20200808001 |
杨新岐, 张艳新, 霍立兴, 等. 焊接接头疲劳评定局部法研究进展[J]. 机械强度, 2003(6): 675 − 681. doi: 10.3321/j.issn:1001-9669.2003.06.018
Yang Xinqi, Zhang Yanxin, Huo Lixin, et al. Review of fatigue assessment of welded joints by local approaches[J]. Journal of Mechanical Strength, 2003(6): 675 − 681. doi: 10.3321/j.issn:1001-9669.2003.06.018
|
霍立兴. 焊接结构的断裂行为及评定[M]. 中国建筑工业出版社, 2000.
Huo Lixing. Fatigue behavior and evaluation of welded structure[M]. China Architecture & Building Press, 2000.
|
张彦华. 焊接结构疲劳分析[M]. 化学工业出版社, 2013.
Zhang Yanhua. Fatigue analysis of welded structure[M]. Chemical Industry Press, 2013.
|
Shi Y, Guo H. Fatigue performance and fatigue damage parameter estimation of spot welded joints of aluminium alloys 6111‐T4 and 5754[J]. Fatigue & Fracture of Engineering Materials & Structures, 2014, 36(10): 1081 − 1090.
|
Armansyah, Saedon J, Ho H C, et al. Investigation on parameter contribution to the property of weld joint AA5052-H112 sheets in friction stir spot welding under fatigue load and failure mode[J]. Applied Mechanics and Materials, 2020, 899: 117 − 125. doi: 10.4028/www.scientific.net/AMM.899.117
|
Yu Huiping, Hu Mingqing, Liu Yuehua, et al. Analysis of the effect of geometrical parameters on fatigue performance of spot-weld joint for ultra-high strength steel[J]. China Welding, 2016, 25(4): 34 − 41.
|
Ertas A H, Sonmez F O. A parametric study on fatigue strength of spot‐weld joints[J]. Fatigue & Fracture of Engineering Materials & Structures, 2008, 31(9): 766 − 776.
|
Murugan R, Venugobal P R, Ramaswami T P, et al. Studies on the effect of weld defect on the fatigue behavior of welded structures[J]. China Welding, 2018, 27(1): 53 − 59.
|
Fricke W. Fatigue analysis of welded joints state of development[J]. Marine Structures, 2003, 16(3): 185 − 200. doi: 10.1016/S0951-8339(02)00075-8
|
Hobbacher A F. The new IIW recommendations for fatigue assessment of welded joints and components-a comprehensive code recently updated[J]. International Journal of Fatigue, 2009, 31(1): 50 − 58. doi: 10.1016/j.ijfatigue.2008.04.002
|
Radaj D, Sonsino C M, Fricke W. Recent developments in local concepts of fatigue assessment of welded joints[J]. International Journal of Fatigue, 2009, 31(1): 2 − 11. doi: 10.1016/j.ijfatigue.2008.05.019
|
彭凡, 姚云建, 顾勇军. 热点应力法评定焊接接头疲劳强度的影响因素[J]. 焊接学报, 2010, 31(7): 83 − 86.
Peng Fan, Yao Yunjian, Gu Yongjun. Influence factors of fatigue strength assessment for welded joints by hot spot stress approach[J]. Transactions of the China Welding Institution, 2010, 31(7): 83 − 86.
|
刘刚, 唐柳伦, 黄一. 基于场强法的焊接接头疲劳寿命影响因素研究[J]. 船舶力学, 2014, 18(Z1): 158 − 164.
Liu Gang, Tang Liulun, Huang Yi. A study on the influence factors of fatigue in welded joints based on field intensity approach[J]. Journal of Ship Mechanics, 2014, 18(Z1): 158 − 164.
|
王东坡, 曹舒, 邓彩艳. 基于缺口应力法的场桥导轨焊接结构疲劳性能评估[J]. 焊接学报, 2016, 37(4): 5 − 8.
Wang Dongpo, Cao Shu, Deng Caiyan. Notch stress concepts for fatigue assessment of welded portal crane rail structure[J]. Transactions of the China Welding Institution, 2016, 37(4): 5 − 8.
|
Yang X H, Zou L, Deng W. Fatigue life prediction for welding components based on hybrid intelligent technique[J]. Material Science and Engineering A, 2015, 642: 253 − 261. doi: 10.1016/j.msea.2015.07.006
|
邹丽, 杨鑫华, 孙屹博, 等. 基于变精度粗糙集的铝合金焊接接头疲劳寿命预测[J]. 焊接学报, 2013, 34(4): 65 − 68.
Zou Li, Yang Xinhua, Sun Yibo, et al. Fatigue life prediction of aluminum alloy welded joint based on variable precision rough set[J]. Transactions of the China Welding Institution, 2013, 34(4): 65 − 68.
|
王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848 − 1853.
Wang Chunsheng, Zou Li, Yang Xinhua. Analysis of fatigue life factors of aluminum alloy welded joints based on neighborhood rough set theory[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1848 − 1853.
|
刘亚良, 孙屹博, 邹丽, 等. 基于信息熵的铝合金焊接接头疲劳寿命分析方法[J]. 焊接学报, 2018, 39(4): 67 − 72. doi: 10.12073/j.hjxb.2018390098
Liu Yaliang, Sun Yibo, Zou Li, et al. Fatigue life analysis method of aluminum alloy welded joints based on information entropy[J]. Transactions of the China Welding Institution, 2018, 39(4): 67 − 72. doi: 10.12073/j.hjxb.2018390098
|
Shannon C E. The mathematical theory of communication[J]. Bell Labs Technical Journal, 1950, 3(9): 31 − 32.
|
Quinlan J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81 − 106.
|
Quinlan, J R. C4.5: Programs for machine learning[M]. San Mateo: Morgan Kaufmann Publishers Incorporated, 1993.
|
Roman F, Nalewajski. Entropy descriptors of the chemical bond in information theory. I. Basic concepts and relations[J]. Molecular Physics, 2004, 102(6): 531 − 546. doi: 10.1080/00268970410001675581
|
Ghayab H R A, Li Y, Siuly S, et al. Epileptic seizures detection in EEGs blending frequency domain with information gain technique[J]. Soft Computing, 2019, 23(1): 227 − 239. doi: 10.1007/s00500-018-3487-0
|
[1] | DAI Xinxin, GAO Xiangdong, ZHENG Qiaoqiao, JI Yukun. A method of fuzzy clustering identification for weld defects by magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 54-57. DOI: 10.12073/j.hjxb.20200525001 |
[2] | GAO Xiangdong, LIANG Jianbin, LIU Guiqian, ZHANG Yanxi. Identification of high-power fiber laser welding penetration based on fuzzy clustering algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 22-25. DOI: 10.12073/j.hjxb.20170505 |
[3] | WANG Xuyou, SUN Qian, WANG Wei, Li Xiaoyu. Study on the changing ruler of plasma in laser welding and the quick testing method of blowhole defects——integral analysis method for signals detection[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 45-48. |
[4] | TANG Zhengkui, DONG Junhui, ZHANG Yongzhi, HOU Jijun. Prediction of mechanical properties of welding joints by hybrid cluster fuzzy RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 105-108. |
[5] | XIA Weisheng, YANG Yunzhen, ZHANG Haiou, WANG Guilan. Data mining technology and intelligent control strategy in plasma spraying process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 33-36. |
[6] | LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28. |
[7] | BAI Yan, GAO Hongming, Lu Hao, Shi Lei. Analysis of plasma-MIG arc signal based on LabVIEW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 59-62. |
[8] | WANG Chun-ming, HU Lun-ji, HU Xi-yuan, DU Han-bin. Measurement and analysis of plasma optic signal during laser welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 83-86,90. |
[9] | WANG Chun-ming, YU Fu-lin, DUAN Ai-qin, HU Lun-jin. Relationship Between Penetration Depth and Plasma Optic Signal During Partial-Penetration Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 45-48,56. |
[10] | Wang Jialing, Pan Jiluan. A STUDY OF TECHNOLOGICAL STABILITY OF COVERED STAINLESS STEEL ELECTRODES BY FUZZY CLUSTER ANALYSIS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (1): 44-50. |