Advanced Search
ZHANG Shuaifeng, JIANG Peng, YU Bingbing, GONG Shuili, YANG Guang. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-Mo alloy fabricated by electron beam rapid manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 121-126, 155. DOI: 10.12073/j.hjxb.2019400273
Citation: ZHANG Shuaifeng, JIANG Peng, YU Bingbing, GONG Shuili, YANG Guang. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-Mo alloy fabricated by electron beam rapid manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 121-126, 155. DOI: 10.12073/j.hjxb.2019400273

Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-Mo alloy fabricated by electron beam rapid manufacturing

More Information
  • Received Date: September 15, 2018
  • Available Online: July 12, 2020
  • The Chemical compositions, microstructure, mechanical properties, toughness of Ti6321 alloy made by electron beam rapid manufacturing (EBRM) were studied. The 1% of Al in the solder wire was burned during the manufacturing process, and no element segregation was found. The as-built microstructures exhibit large columnar grains, which grew epitaxially along the height direction of deposits through many deposition layers. The columnar grain is mainly composed of α lamellae. As a result, the anisotropic coefficient of tensile strength is 2. 6%. Dimple are observed on fractured tensile specimens in both X and Z directions. The impact toughness of X and Z direction is not less than 80J, and the anisotropic coefficient of toughness is 2.6%. The impact fracture is typical ductile fracture, which consists of a large number of dimples.
  • 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    Lu Bingheng, Li Dichen. Development of the additive manufacturing(3D printing) technology[J]. Machine Building and Automation, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001
    王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.

    Wang Huaming. Materials’ fundamental issues of laseradditive manufacturing for high-performance large metalliccomponents[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 − 2698.
    陈国庆, 树 西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214

    Chen Guoqing, Shu Xi, Zhang Binggang, et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214
    王 哲, 张 钧, 李述军, 等. 电子束熔化逐层成形法制备Ti6Al4V合金的组织与力学性能[J]. 中国有色金属学报, 2013, 23(z1): 20 − 23.

    Wang Zhe, Zhang Jun, Li Shujun, et al. Microstructures and mechanical properties of Ti6Al4V alloy fabricated by electron beam melting[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(z1): 20 − 23.
    巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 空制造技术, 2013, 433(13): 66 − 71. doi: 10.3969/j.issn.1671-833X.2013.13.012

    Gong Shuili, Suo Hongbo, Li Huaixue. Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013, 433(13): 66 − 71. doi: 10.3969/j.issn.1671-833X.2013.13.012
    黄志涛, 巩水利, 锁红波, 等. 电子束熔丝成形的TC4钛合金的组织与性能研究[J]. 钛工业进展, 2016, 33(5): 33 − 36.

    Huang Zhitao, Gong Shuili, Suo Hongbo, et al. Microstructure and properties of TC4 titanium alloy manufactured by electron beam rapid manufacturing[J]. Titanium Industry Progress, 2016, 33(5): 33 − 36.
    Bush R W, Brice C A. Elevated temperature characterization of electron beam free form fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er[J]. Materials Science and Engineering: A, 2012, 554(5): 12 − 21.
    Suo Hongbo, Chen Zheyuan, Liu Jianrong, et al. Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing[J]. Rare Metal Materials and Engineering, 2014, 43(4): 0780 − 0785. doi: 10.1016/S1875-5372(14)60083-7
    Xie Yong, Ming Gao, Wang Fude, et al. Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V[J]. Materials Science and Engineering A, 2018, 709: 265 − 269. doi: 10.1016/j.msea.2017.10.064
    Zhai Yuwei, Ladosda, Browne J, et al. Fatigue crack growth behavior and microstructural mechanismsin Ti-6Al-4V manufactured by laser engineered net shaping[J]. International Journal of Fatigue, 2016, 93: 51 − 63. doi: 10.1016/j.ijfatigue.2016.08.009
    周长平, 林 枫, 杨 浩, 等. 增材制造技术在船舶制造领域的应用进展[J]. 船舶工程, 2017, 39(2): 80 − 87.

    Zhou Changping, Lin Feng, Yang Hao, et al. Application progress of additive manufacturing technology in shipbuilding field[J]. Ship Engineering, 2017, 39(2): 80 − 87.
    吴笑风, 岳 宏, 石 瑶, 等. 我国船舶产业智能制造及其标准化现状与趋势[J]. 舰船科学技术, 2016, 38(5): 1 − 6. doi: 10.3404/j.issn.1672-7619.2016.05.001

    Wu Xiaofeng, Yue Hong, Shi Yao, et al. Current status and development trend of smart manufacturing technology and standardization of China's shipbuilding industry[J]. Ship Science and Technology, 2016, 38(5): 1 − 6. doi: 10.3404/j.issn.1672-7619.2016.05.001
    Shi Xuezhi, Ma Shuyuan, Liu Changmeng, et al. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: microstructure and mechanical properties[J]. Materials Science and Engineering A, 2017, 684: 196 − 204. doi: 10.1016/j.msea.2016.12.065
    Thijs L, Verhaeghe F, Craefhs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Material, 2010, 58: 3303 − 3312. doi: 10.1016/j.actamat.2010.02.004
    Carrolli B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated withdirected energy deposition additive manufacturing[J]. Acta Material, 2015, 87: 309 − 320. doi: 10.1016/j.actamat.2014.12.054
    Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review[J]. Materials & Design, 2018, 139: 565 − 586.
    邵 晖, 赵永庆, 葛 鹏, 等. 不同组织类型对TC21合金强-塑性的影响[J]. 稀有金属材料与工程, 2013, 42(4): 845 − 848. doi: 10.3969/j.issn.1002-185X.2013.04.039

    Shao Hui, Zhao Yongqing, Ge Peng, et al. Effects of different microstructure types on the strength and plasticity of TC21 alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4): 845 − 848. doi: 10.3969/j.issn.1002-185X.2013.04.039
  • Related Articles

    [1]YANG Yule, DAI Yanfeng, GUO Meng, YANG Chao, PENG Weikang. Microstructure and mechanical properties of ultra-high strength AerMet 100 Steel formed by laser metal deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 137-144. DOI: 10.12073/j.hjxb.20231219002
    [2]LI Mingchuan, MA Rui, CHANG Shuai, WANG Qishun, LI Liqun. Microstructure evolution and anisotropy of nickel-based superalloy fabricated by LPBF[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 34-40, 47. DOI: 10.12073/j.hjxb.20231108002
    [3]HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002
    [4]WANG Lei, LI He, HUANG Yong, WANG Kehong, ZHOU Qi. Phase field investigation on solidification cracking susceptibility in the molten pool under different anisotropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 83-86. DOI: 10.12073/j.hjxb.20210309001
    [5]RAN Teng, FAN Tao, DU Fei, ZHAI Xiang, YANG Donghua, HUANG Fuxiang. First-principles study on anisotropy of elastic modulus of α-CoSn3 IMC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 71-76. DOI: 10.12073/j.hjxb.20201209004
    [6]ZHANG Shuaifeng, LV Yifan, WEI Zhengying, JIANG Peng, PENG Hui, CUI Yongjie. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 56-62. DOI: 10.12073/j.hjxb.20200804003
    [7]ZHANG Man, WANG Pengfei, ZHANG Lincai, LIN Yuebin. Microstructure and mechanical properties of Cu/Al joint brazed with Zn-Al-Ag filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 55-58.
    [8]YANG Changyong, XU Jiuhua, DING Wenfeng, FU Yucan, CHEN Zhenzhen. Microstructure and mechanical property of Ag-Cu-Ti fillers added with rare earth lanthanum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 67-70,74.
    [9]ZHOU Qinglin, QIAO Jisen, CHEN Jianhong, ZHU Liang. Mechanical properties of CO2-laser and TIG aluminium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 63-66.
    [10]YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76.

Catalog

    Article views (383) PDF downloads (44) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return