Citation: | ZENG Caiyou, DONG Chunlin, ZHANG Yupeng, ZHANG Xinping. Microstructure and phase transformation behavior of rapidly solidified Ni51Ti49 shape memory alloy joint by laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 20-25. DOI: 10.12073/j.hjxb.20200731001 |
郑玉峰, Liu Yinong. 工程用镍钛合金[M]. 北京: 科学出版社, 2014.
Zheng Yufeng, Liu Yinong. NiTi alloys for engineering[M]. Beijing: Science Press, 2014.
|
Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys[J]. Progress in Materials Science, 2005, 50(5): 511 − 678. doi: 10.1016/j.pmatsci.2004.10.001
|
Sun B, Fu M W, Lin J P, et al. Effect of low-temperature aging treatment on thermally- and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires[J]. Materials & Design, 2017, 131: 49 − 59.
|
Pelegrina J L, Olbricht J, Yawny A, et al. Temperature-induced transformations and martensitic reorientation processes in ultra-fine-grained Ni rich pseudoelastic NiTi wires studied by electrical resistance[J]. Journal of Alloys and Compounds, 2018, 735: 2574 − 2583. doi: 10.1016/j.jallcom.2017.12.009
|
Li Y Y, Yao X, Cao S S, et al. Rapidly solidified and optimally constraint-aged Ni51Ti49 shape memory alloy aiming at making a purpose-designed bioactuator[J]. Materials & Design, 2017, 118(15): 99 − 106.
|
Li Y Y, Cao S S, Ma X, et al. Influence of strongly textured microstructure on the all-round shape memory effect of rapidly solidified Ni51Ti49 alloy[J]. Materials Science and Engineering: A, 2017, 705(29): 273 − 281.
|
Zeng C Y, Cao S, Li Y Y, et al. Two-step constrained aging treatment enabled superior two-way shape memory effect and elevated R-phase transformation temperatures in a rapidly solidified Ni51Ti49 alloy[J]. Journal of Alloys and Compounds, 2019, 785: 1180 − 1188. doi: 10.1016/j.jallcom.2019.01.296
|
Grummon D S, Shaw J A, Foltz J. Fabrication of cellular shape memory alloy materials by reactive eutectic brazing using niobium[J]. Materials Science Engineering A, 2006, 438–440: 1113 − 1118.
|
丁彦军, 佟铮, 李进福, 等. NiTi合金爆炸焊接试验分析[J]. 焊接学报, 2010, 31(12): 109 − 112.
Ding Yanjun, Tong Zheng, Li Jinfu, et al. Experimental analysis of explosive welding of NiTi alloy[J]. Transactions of the China Welding Institution, 2010, 31(12): 109 − 112.
|
张威, 敖三三, 曾志, 等. 添加铜箔中间层的NiTi形状记忆合金超声波焊接[J]. 焊接学报, 2019, 40(2): 64 − 67.
Zhang Wei, Ao Sansan, Zeng Zhi, et al. Ultrasonic welding of NiTi shape memory alloy with Cu interlayer[J]. Transactions of the China Welding Institution, 2019, 40(2): 64 − 67.
|
Yang D, Jiang H C, Zhao M J, et al. Microstructure and mechanical behaviors of electron beam welded NiTi shape memory alloys[J]. Materials & Design, 2014, 57: 21 − 25.
|
Oliveira J P, Braz Fernandes F M, Miranda R M, et al. Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi[J]. Materials Characterization, 2019, 119: 148 − 151.
|
张怡, 王宇, 叶晶, 等. 超弹性NiTi记忆合金丝激光焊接接头组织与性能研究[J]. 热加工工艺, 2014, 43(5): 27 − 30.
Zhang Yi, Wang Yu, Ye Jing, et al. Research for microstructures and properties of laser welded joint of superelastic NiTi alloy wire[J]. Hot Working Technology, 2014, 43(5): 27 − 30.
|
Yao R H, Dong P, Liaw P K, et al. Microstructure and shape memory effect of laser welded Nitinol wires[J]. Materials Letters, 2019, 238: 1 − 5. doi: 10.1016/j.matlet.2018.11.141
|
Tan L, Crone W C. In situ TEM observation of two-step martensitic transformation in aged NiTi shape memory alloy[J]. Scripta Materialia, 2004, 50(6): 819 − 823. doi: 10.1016/j.scriptamat.2003.12.019
|
Fan G L, Chen W, Yang S, et al. Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys[J]. Acta Materialia, 2004, 52(14): 4351 − 4362. doi: 10.1016/j.actamat.2004.06.002
|
[1] | ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001 |
[2] | WANG Lei, XU Xuezong, WANG Kehong, HUANG Yong, PENG Yong, YANG Dongqing. Microstructures and mechanical properties of fiber laser beam welded 7A52 alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 28-31, 37. DOI: 10.12073/j.hjxb.20200518001 |
[3] | ZHANG Jianchao1, QIAO Junnan1, WU Shikai1, LIAO Hongbin2, WANG Xiaoyu2. Microstructure and mechanical properties of fiber laser welded joints of reduced activation ferritic/martensitic CLF-1 steel heavy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109 |
[4] | YANG Jianguo, CHEN Shuangjian, HUANG Nan, FANG Kun, YUAN Shijian, LIU Gang. Factors affecting deformation induced martensitic transformation of SUS304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 89-92. |
[5] | ZHOU Yefei, HAN Chao, LIU Ligang, YANG Yulin, YANG Qingxiang. Simulation of tangential process of stress field after hard-face-welding during martensite transformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 73-76. |
[6] | JIANG Zhizhong, HUANG Jihua, HU Jie, CHEN Shuhai. Microstructure and mechanical properties of laser welded joints of CLAM steel used for fusion reactor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 5-8. |
[7] | DING Yanjun, TONG Zheng, LI Jinfu, LIN Yulong. Experimental analysis of explosive welding of NiTi alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 109-112. |
[8] | ZHANG Weihua, QIU Xiaoming, SUN Daqian, ZHAO Xihua. Microstructure and mechanical properties of CO2 laser-welded joint of ZL109 aluminum silicon alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 45-48. |
[9] | LI Deyuan, ZHANG Hongbing, HAN Hailing, ZHANG Zhongli. Rapid manufacture method of steel-base mould based on arc spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 9-12,16. |
[10] | Wang Yucheng, Yu Jie, Li Yan, Li Weidong, Wang Jianguang. Martensitic Transformation and Microstructure in Fusion Zone of Dissimilar Steel Welded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 147-152. |
1. |
姜佳佳. 间接电弧焊技术的热量传输机制及研究现状. 热加工工艺. 2024(01): 17-22 .
![]() | |
2. |
谭振,汪殿龙,梁志敏,王立伟. 多丝电弧增材制造研究进展. 热加工工艺. 2024(17): 1-7+19 .
![]() | |
3. |
李博洋,巴现礼,徐国敏,陈帅帅,刘黎明. Forming characteristics of triple-wire gas indirect arc surfacing. China Welding. 2024(04): 7-15 .
![]() | |
4. |
于鹏,蔡正标,赵明明,刘鹏,张文明. 基于焊接电信号频域特征的焊接过程稳定性评估. 焊接学报. 2023(04): 105-110+135-136 .
![]() | |
5. |
王泽力,张天奕,刁国宁,徐国敏,刘黎明. 低碳钢三丝间接电弧焊传热机制及工艺性能. 焊接学报. 2022(01): 1-6+113 .
![]() | |
6. |
张天奕,张兆栋,王泽力,徐国敏,刘黎明. 旁路耦合三丝间接电弧增材制造成形特性. 焊接学报. 2022(09): 25-30+114 .
![]() |