Advanced Search
LIU Lijun, LIU Dayu, WANG Xiaolu, LI Jiqiang, CUI Yuanbiao, JIA Zhixin. Parameter optimization of laser cladding ceramic repair layer of H13 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 65-70. DOI: 10.12073/j.hjxb.20200508002
Citation: LIU Lijun, LIU Dayu, WANG Xiaolu, LI Jiqiang, CUI Yuanbiao, JIA Zhixin. Parameter optimization of laser cladding ceramic repair layer of H13 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 65-70. DOI: 10.12073/j.hjxb.20200508002

Parameter optimization of laser cladding ceramic repair layer of H13 steel

More Information
  • Received Date: May 07, 2020
  • Available Online: October 15, 2020
  • In view of surface problems such as wear and corrosion caused by the failure of H13 die steel, nickel-based silicon carbide powder was used to optimize the parameters of the repair layer of H13 die steel. In order to explore the effect of laser parameters on the repair layer in laser cladding, laser cladding experiments were carried out using different laser currents and defocus amounts as optimized process parameters. It was found that changing the size of the laser current and the amount of defocusing had different degrees of influence on the cladding size, microstructure and mechanical properties of the repair layer. The geometric dilution rate of the cladding layer increases as the laser current increases, and the grain size of the cladding layer becomes coarse; The geometric dilution rate of the cladding layer decreases as the amount of defocus increases, and the grain size of the cladding layer becomes finer. The optimized results obtained through the analysis of metallographic microscope, SEM and micro hardness tester showed that the laser current is 115A, the defocus amount is 51mm, and the microhardness value of the cladding layer reaches the highest value, which is about 2.6 times the hardness of the substrate. The above research results provide theoretical and technical basis for improving the quality of the laser cladding repair layer on the failure surface of the mold.
  • 王孟, 刘宗德, 宝志坚. H13钢汽车热锻模具失效机理分析[J]. 锻压技术, 2008, 33(4): 83 − 86. doi: 10.3969/j.issn.1000-3940.2008.04.022

    Wang Meng, Liu Zongde, Bao Zhijian. Analysis of failure mechanism of H13 steel automobile hot forging die[J]. Forging Technology, 2008, 33(4): 83 − 86. doi: 10.3969/j.issn.1000-3940.2008.04.022
    唐九兴. 一种耐磨合金堆焊焊条的研制[J]. 世界有色金属, 2019(10): 256 − 257. doi: 10.3969/j.issn.1002-5065.2019.10.150

    Tang Jiuxing. Development of a wear-resistant alloy surfacing electrode[J]. World Nonferrous Metals, 2019(10): 256 − 257. doi: 10.3969/j.issn.1002-5065.2019.10.150
    李静. 浅谈机械产品失效模式[J]. 中国金属通报, 2019(5): 256 − 257. doi: 10.3969/j.issn.1672-1667.2019.05.163

    Li Jing. Talking about the failure mode of mechanical products[J]. China Metal Bulletin, 2019(5): 256 − 257. doi: 10.3969/j.issn.1672-1667.2019.05.163
    朱刚贤, 张安峰, 李涤尘. 激光熔覆工艺参数对熔覆层表面平整度的影响[J]. 中国激光, 2010, 37(1): 296 − 301. doi: 10.3788/CJL20103701.0296

    Zhu Gangxian, Zhang Anfeng, Li Dichen. The effect of laser cladding process parameters on the surface flatness of the cladding layer[J]. Chinese Laser, 2010, 37(1): 296 − 301. doi: 10.3788/CJL20103701.0296
    王鑫龙, 孙文磊, 张建杰, 等. 激光熔覆零件破损边界提取和形状还原研究[J]. 激光技术, 2017, 41(5): 675 − 679. doi: 10.7510/jgjs.issn.1001-3806.2017.05.011

    Wang Xinlong, Sun Wenlei, Zhang Jianjie, et al. Research on extraction and shape restoration of damaged boundary of laser cladding parts[J]. Laser Technology, 2017, 41(5): 675 − 679. doi: 10.7510/jgjs.issn.1001-3806.2017.05.011
    黄勇, 孙文磊, 陈影. 激光熔覆再制造复杂轴类零件的轨迹规划[J]. 红外与激光工程, 2017, 46(5): 45 − 51.

    Huang Yong, Sun Wenlei, Chen Ying. Trajectory planning for laser cladding remanufacturing complex shaft parts[J]. Infrared and Laser Engineering, 2017, 46(5): 45 − 51.
    Hofman J T, Lange D F, Pathiraj B, et al. FEM modeling and experimental verification for dilution control in laser cladding[J]. Journal of Materials Processing Technology, 2011, 211: 187 − 196. doi: 10.1016/j.jmatprotec.2010.09.007
    刘立君, 齐萌, 于义涛, 等. TIG填丝+激光熔凝模具修复工艺分析[J]. 焊接学报, 2018, 39(4): 73 − 78. doi: 10.12073/j.hjxb.2018390099

    Liu Lijun, Qi Meng, Yu Yitao, et al. Analysis of TIG filler wire + laser melting mold repair process[J]. Transactions of the China Welding Institution, 2018, 39(4): 73 − 78. doi: 10.12073/j.hjxb.2018390099
    袁庆龙, 冯旭东, 曹晶晶, 等. 激光熔覆技术研究进展[J]. 材料导报, 2010, 24(2): 112 − 116.

    Yuan Qinglong, Feng Xudong, Cao Jingjing, et al. Research progress in laser cladding technology[J]. Materials Review, 2010, 24(2): 112 − 116.
    He Yanan, Song Qiang, Sun Kang, et al. Microstructure and properties of in-situ chromium carbide composite coating by laser cladding[J]. China Welding, 2018, 27(4): 10 − 17.
    Liu Jiaqi, Yu Huijun, Chen Chuanzhong. Research progress of laser cladding self-fluxing alloy coatings on titanium alloys[J]. China Welding, 2018, 27(2): 45 − 51.
  • Related Articles

    [1]LIU Lijun, FENG Mengkui, WANG Xiaolu, CUI Yuanbiao, JIA Zhixin, LI Jiqiang. Microstructure analysis of laser cladding strengthening layer on H13 die steel surface assisted by ultrasonic[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 85-90, 96. DOI: 10.12073/j.hjxb.20200503001
    [2]YIN Yan, KANG Ping, LU Chao, ZHANG Yuan, ZHANG Ruihua. Microstructure and microhardness analysis of laser welded dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 71-77. DOI: 10.12073/j.hjxb.20191227002
    [3]YIN Yan, PAN Cunliang, ZHAO Chao, ZHANG Ruihua, QU Yuebo. Formation mechanism of microstructure of laser cladding high chromium Fe-based alloy and its effect on microhardness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 114-120. DOI: 10.12073/j.hjxb.2019400192
    [4]NIE Xin1, ZHU Weiqiang1, CAI Hongfeng2, CHEN Huanhuan1. Optimization of resistance spot welding parameters based on load of welding spot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 114-120. DOI: 10.12073/j.hjxb.2018390135
    [5]YANG Shuo, CHANG Baohua, XING Bin, DU Dong. Influences of forced cooling on the microstructure and microhardness in laser metal deposition of IC10 super alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 31-35. DOI: 10.12073/j.hjxb.2018390063
    [6]WU Xiangyang, ZHANG Zhiyi, QI Weichuang, TIAN Renyong, SHI Chunyuan. Optimization of narrow groove plasma-MAG hybrid welding process parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 116-119. DOI: 10.12073/j.hjxb.20170526
    [7]JIANG Wei, WANG Lifeng. Stress analysis and structure optimization of copper cylinders in 3D packaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 112-116.
    [8]HONG Bo, LI Zhenkai, LIU Jian, DAI Jiangping. Method of optimizing magnetic-control arc welding sensor parameters based on Kriging surrogate model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 1-4,9.
    [9]YIN Yan, LI Zilin, XU Guangwei, ZHANG Ruihua, QU Yuebo. Microhardness and microstructure of laser cladding layer on 3Cr13 kitchen knife by disc laser coaxial powder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 85-88.
    [10]QI Yongai, ZHAO Jianfeng, XIE Deqiao, LI Yue. Fining grain of FGH95 nickel-based superalloy laser cladding layer by ultrasonic impact treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 59-62.
  • Cited by

    Periodical cited type(7)

    1. 林江红,杜茂华,潘传旭. 基于数学统计综合分析方法的H13模具钢表面激光熔覆工艺参数优化. 中国激光. 2025(08): 119-132 .
    2. 叶超,侯亮,陈云,徐杨,刘文志,王振忠. 316L不锈钢激光熔覆宏微观特征优化. 焊接学报. 2023(03): 8-16+129 . 本站查看
    3. 胡言峰,杜彦斌,许磊,周志杰,舒林森. 响应面法与粒子群算法集成的激光熔覆工艺参数优化方法. 机械科学与技术. 2023(04): 629-637 .
    4. 赵菲,刘子敬,张杰,吴志生. 超细VC对激光熔覆H13合金显微组织和耐磨性的影响. 表面技术. 2022(02): 232-240 .
    5. 胡中潮,唐永东,高忠玉,陈湖演,蔡健文,邓天德. H13模具钢铝合金工件生产应用现状综述. 模具制造. 2022(02): 81-85 .
    6. 董月,舒林森. 离焦量对MoS_2改性Fe-Cr-Mo-Si合金涂层组织与性能的影响. 金属热处理. 2022(05): 246-251 .
    7. 崔少伟,王树奇,姜伟,刘喜艳. 不同熔覆参数下的AlFeCrCoNiTi高熵合金涂层的高温摩擦磨损性能. 钢铁钒钛. 2021(03): 155-161+192 .

    Other cited types(5)

Catalog

    Article views (475) PDF downloads (11) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return