Citation: | WU Xiangyang, ZHANG Zhiyi, QI Weichuang, TIAN Renyong, SHI Chunyuan. Optimization of narrow groove plasma-MAG hybrid welding process parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 116-119. DOI: 10.12073/j.hjxb.20170526 |
Kim J S, Kim N P, Han S H. Experimental study on the structural safety assessment of the tilting bolster frame[J]. Key Engineering Materials, 2006, 321-323: 603-606.
|
崔晓芳, 马 君, 兆文忠. 高速动力车转向架构架焊接变形的数值分析研究[J]. 铁道学报, 2006, 26(3): 31-35. Cui Xiaofang, Ma Jun, Zhao Wenzhong. Numerical simulation study of welding deformation in the bogie frame of the high-speed locomotive[J]. Journal of the China Railway Society, 2006, 26(3): 31-35.
|
王长春, 杜 兵. 等离子-MIG/MAG复合热源焊接技术研究与应用[J]. 焊接, 2009, 10(12): 62-64. Wang Changchun, Du Bing. Research and application of plasma-MIG/MAG hybrid welding technology[J]. Welding, 2009, 10(12): 62-64.
|
阙福恒, 王振民. 等离子-MIG焊的研究进展[J]. 电焊机, 2013, 43(3): 28-30. Que Fuheng, Wang Zhenmin. Research progress in the plasma-MIG welding[J]. Electric Welding Machine, 2013, 43(3): 28-30.
|
Kim D, Rhee S, Papk H. Modelling and optimization of a GMA welding process by genetic algorithm and response surface methodology[J]. International Journal of Production Research, 2002, 40(7): 1699-1711.
|
洪 波, 陈 宇, 李湘文, 等. 基于响应面法的埋弧焊磁控传感器参数优化[J]. 焊接学报, 2015, 36(3): 14-17. Hong Bo, Chen Yu, Li Xiangwen, et al. Optimization of magnetic-control sensor parameters of submerged arc welding based on response surface method[J]. Transactions of the China Welding Institution, 2015, 36(3): 14-17.
|
王万中. 试验的设计与分析[M]. 北京: 高等教育出版社, 2004.
|
[1] | YIN Chi, GUO Yonghuan, FAN Xiying, ZHU Zhiwei, SONG Haoxuan, ZHANG Liang. Multi-objective optimization of aluminum copper laser welding parameters based on BKA-GBRT and MOSPO[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 140-144. DOI: 10.12073/j.hjxb.20240721002 |
[2] | WANG Qun, YU Yang, QIAN Zhiqiang. Optimization of process parameters for electron beam butt welding of HR-2 hydrogen resistant steel based on response surface method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 50-57. DOI: 10.12073/j.hjxb.20220522001 |
[3] | NIE Xin1, ZHU Weiqiang1, CAI Hongfeng2, CHEN Huanhuan1. Optimization of resistance spot welding parameters based on load of welding spot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 114-120. DOI: 10.12073/j.hjxb.2018390135 |
[4] | ZHANG Dong1,2, CHEN Maoai1, WU Chuansong1. Optimization of waveform parameters for high speed CMT welding of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 118-122. DOI: 10.12073/j.hjxb.2018390027 |
[5] | HONG Bo, CHEN Yu, LI Xiangwen, ZHU Yafei. Optimization of magnetic-control sensor parameters of submerged arc welding based on response surface method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 14-17. |
[6] | ZHAO Lihua, ZHANG Kailin. Influence of heat sink on welding residual deformation and optimization analysis of parameters of heat sink[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 37-40. |
[7] | WANG Hongxiao, SHI Chunyuan, WANG Chunsheng, WANG Ting. Optimization of laser welding parameters of stainless steel vehicle body based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 69-72. |
[8] | SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108. |
[9] | ZHANG Jianjun, LI Wushen, DI Xinjie, WU Qiang. Prediction of performance of heat affected zone and optimization on welding parameters of 07MnNiCrMoVDR steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 29-32. |
[10] | Gang Tie, Takayoshi OHJI. On-line idcntification of mathematical model parameters and selection of optimized welding parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (4): 225-230. |