Advanced Search
HE Jianping, WU Xin, JI Yongfeng, LU Fei. Weld forming mechanism of 100 μm ultra-thin stainless steel by pulsed microplasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 77-84. DOI: 10.12073/j.hjxb.20200423002
Citation: HE Jianping, WU Xin, JI Yongfeng, LU Fei. Weld forming mechanism of 100 μm ultra-thin stainless steel by pulsed microplasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 77-84. DOI: 10.12073/j.hjxb.20200423002

Weld forming mechanism of 100 μm ultra-thin stainless steel by pulsed microplasma arc welding

More Information
  • Received Date: April 22, 2020
  • Available Online: August 16, 2021
  • Dynamic variation mechanism of welding thermal cycles at different points in weld central line and influences of pulse parameters on it were studied for pulsed microplasma arc welding (P-MPAW) 100 μm ultra-thin stainless steel (SS) sheets. Combining experimental results about weld morphologies with different pulse parameters, the relations between weld morphologies and dynamic characters of welding thermal cycles were discussed further. The results were as following. There are five different weld morphologies obtained after welding with different combination of four pulse parameters. Welding thermal cycles tend to be identical at different points of one pulse cycle distance in weld center line. When the ratio of peak current to base current increases at low pulse frequency, the maximum values and minimum values in Tm and t8/13 (heating time, i. e. time span for temperature rising from 800 ℃ to 1 300 ℃) at different points of one pulse cycle distance in weld center line decrease and increase respectively, and both maximum value and minimum value of t8/5 increases. With an increasing in pulse frequency, the average values of t8/5 and t8/13 decrease. In most cases (when pulse frequency is not lower than 5 Hz or when base current are 0.5 A and 0.9 A at pulse frequency 1 Hz and 5 Hz, respectively), experimentally obtained duty cycles about weld morphologies (σ1) were as the same as the calculated duty cycles about the highest temperature of welding thermal cycle (σ2). It indicated that the calculated results were in agreement with the experimental results.
  • Essam Ahmed, Ramy Ahmed, A EL-Nikhaily, et al. Effect of heat input and filler metals on weld strength of gas tungsten arc welding of AISI 316 weldments[J]. China Welding, 2020, 29(1): 8 − 16.
    Jaehun Kim, Sanseo Kim, Keunug Kim, et al. Effect of beam size in laser welding of ultra-thin stainless steel foils[J]. Journal of Materials Processing Technology, 2016, 233(6): 125 − 134.
    吴刚, 关山月, 汪小凯, 等. 薄板点焊超声检测信号特征分析与缺陷识别[J]. 焊接学报, 2019, 40(4): 112 − 118. doi: 10.12073/j.hjxb.2019400110

    Wu Gang, Guan Shanyue, Wang Xiaokai, et al. Characteristic analysis of ultrasonically detecting signals and defects recognition[J]. Transactions of the China Welding Institution, 2019, 40(4): 112 − 118. doi: 10.12073/j.hjxb.2019400110
    Cedeño-Viveros Luis D, Vázquez-Lepe Elisa, Rodriguez Ciro A, et al. Influence of process parameters for sheet lamination based on laser micro-spot welding of austenitic stainless steel sheets for bone tissue applications[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115: 247 − 262. doi: 10.1007/s00170-021-07113-3
    江海红, 秦国梁, 冯超, 等. 304不锈钢薄板列置双TIG高速焊缝组织与性能[J]. 焊接学报, 2019, 40(1): 15 − 18. doi: 10.12073/j.hjxb.2019400004

    Jiang Haihong, Qin Guoliang, Feng Chao, et al. Microstructure and properties of welds by duel TIG high speed welding 304 SS plates[J]. Transactions of the China Welding Institution, 2019, 40(1): 15 − 18. doi: 10.12073/j.hjxb.2019400004
    Xu Hailiang, Guo Xingye, Lei Yongping, et al. Welding deformation of ultra-thin 316 stainless steel plate using pulsed laser welding process[J]. Optics and Laser Technology, 2019, 119: 105583. doi: 10.1016/j.optlastec.2019.105583
    董伟伟, 林健, 许海亮, 等. SUS304不锈钢超薄片脉冲激光焊接工艺及接头的显微组织和力学性能[J]. 机械工程材料, 2019, 43(5): 38 − 42, 48. doi: 10.11973/jxgccl201905008

    Dong Weiwei, Lin Jian, Xu Hailiang, et al. Pulsed laser welding process of SUS304 stainless steel sheet and microstructure and mechanical properties of joint[J]. Mechanical Engineering Materials, 2019, 43(5): 38 − 42, 48. doi: 10.11973/jxgccl201905008
    Baruah M, Bag S. Influence of heat input in micro welding of titanium alloy by micro plasma arc[J]. Journal of Materials Processing Technology, 2016, 231(5): 100 − 112.
    Yoshioka S, Miyazaki T, Kimura T, et al. Thin-plate welding by a highpPower density small diameter plasma arc[J]. CIRP Annals - Manufacturing Technology, 1993, 42(1): 215 − 218. doi: 10.1016/S0007-8506(07)62428-7
    Prasad K S, Rao C S, Rao D N, et al. Study on weld quality characteristics of micro plasma arc welded austenitic stainless steels[J]. Procedia Engineering, 2014, 97: 752 − 757. doi: 10.1016/j.proeng.2014.12.305
    许海亮, 郭星晔, 雷永平, 等. 316不锈钢超薄板脉冲激光焊残余应力及变形[J]. 焊接学报, 2019, 40(8): 50 − 54.

    Xu Hailiang, Guo Xingye, Lei Yongping, et al. Residual stress and deformation during pulse laser welding ultra-thin 316 SS sheets[J]. Transactions of the China Welding Institution, 2019, 40(8): 50 − 54.
    卢飞. 脉冲微束等离子弧焊超薄板对接接头微观组织的研究[D]. 上海: 上海工程技术大学, 2015.

    Lu Fei. The research on microstructure in butt joint of ultra-thin steel by micro-plasma arc welding with pulsed current[D]. Shanghai: Shanghai University of Engineering Science, 2015.
    Chukkan J R, Vasudevan M, Muthukumaran S, et al. Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation[J]. Journal of Materials Processing Technology, 2015, 219(5): 48 − 59.
    刘鸣宇, 鲁艳红. 焊接热循环对低合金钢组织及性能的影响[J]. 压力容器, 2019, 36(8): 7 − 11. doi: 10.3969/j.issn.1001-4837.2019.08.002

    Liu Mingyu, Lu Yanhong. Effect of welding thermal cycle on microstructure and properties of low alloy steel[J]. Pressure Vessel Technology, 2019, 36(8): 7 − 11. doi: 10.3969/j.issn.1001-4837.2019.08.002
  • Related Articles

    [1]XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. The influence of welding thermal cycle on the grain structure of friction stir welded 5083 aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240315001
    [2]XIAO Wenbo, HE Yinshui, YUAN Haitao, MA Guohong. Synchronous real-time detection of weld bead geometry and the welding torch in galvanized steel GAMW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 78-82. DOI: 10.12073/j.hjxb.20201021001
    [3]CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004
    [4]LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17.
    [5]LÜ Xiaochun, HE Peng, QIN Jian, DU Bing, HU Zhongquan. Effect of welding thermal cycle on microstructure and properties of intercritically reheated coarse grained heat affected zone in SA508-3 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 47-49.
    [6]WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72.
    [7]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. Designment of test program system for welding thermal cycle in weld zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 93-96.
    [8]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107.
    [9]CHEN Yu-hua, WANG Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 85-88.
    [10]YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100.
  • Cited by

    Periodical cited type(5)

    1. 陈宸,周方正,李成龙,刘新锋,贾传宝,徐瑶. 融合空间和通道特征的等离子弧焊熔池熔透状态预测方法. 焊接学报. 2023(04): 30-38+131 . 本站查看
    2. 潘雪航,何建萍. 基于机器学习和Modbus的超薄板微束等离子弧焊控制系统设计. 计算机时代. 2023(08): 79-83 .
    3. 李维军,何建萍,潘雪航,刘佳惟,伍永超. 基于遗传算法的超薄板焊接接头检测识别. 自动化应用. 2023(17): 135-137 .
    4. 潘雪航,何建萍. 基于机器学习的超薄板焊接接头微尺度信息检测和识别. 智能计算机与应用. 2023(10): 103-107 .
    5. 冯金广,张建国,陈正学. TA2/316L复合板高重频激光焊接参数优化及性能分析. 应用激光. 2022(08): 1-6 .

    Other cited types(1)

Catalog

    Article views (339) PDF downloads (27) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return