Advanced Search
ZOU Wenfeng, LI Yiwen, MEI Qiang, Babkin Aleksandr, CHANG Yunlong. Influence of synchronous magnetic pulse on short circuit transfer CO2 arc welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 16-21. DOI: 10.12073/j.hjxb.20200313002
Citation: ZOU Wenfeng, LI Yiwen, MEI Qiang, Babkin Aleksandr, CHANG Yunlong. Influence of synchronous magnetic pulse on short circuit transfer CO2 arc welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 16-21. DOI: 10.12073/j.hjxb.20200313002

Influence of synchronous magnetic pulse on short circuit transfer CO2 arc welding process

More Information
  • Received Date: March 12, 2020
  • Available Online: November 24, 2020
  • The short-circuit transfer of CO2 gas shielded arc welding is widely used in manufacturing industry, but there are many problems such as spatter, poor formation,unstable transition, etc. in this welding process, especially during higher welding current. A new approach to solve the problems were put forward through applying a synchronous magnetic field. The effect of the synchronous magnetic field with different types on arcing phase was investigated. The short-circuit transfer processes were captured through high-speed camera system with laser backlight to observe the droplet transfer process, calculate droplet size and transfer frequency, etc. The experimental results showed that the droplet transfer frequency was increased, the short-circuit metal transfer process was more stable, the shape of droplet was changed evidently from a round or ellipsoid with sharp tip to flat end, and the dimension of droplet was reduced.
  • Jiang S Y, Wang X W, Chen H M, et al. The impact of adscititious longitudinal magnetic field on CO2 gas shielded welding process[J]. Advanced Materials Research, 2012(538−541): 1447 − 1450.
    常云龙, 刘晓龙, 路林, 等. 短路过渡CO2焊研究现状及展望[J]. 焊接技术, 2013, 42(3): 1 − 5. doi: 10.3969/j.issn.1002-025X.2013.03.001

    Chang Yunlong, Liu Xiaolong, Lu Lin, et al. Current status and prospects of short-circuit transition CO2 gas shielded welding[J]. Welding Technology, 2013, 42(3): 1 − 5. doi: 10.3969/j.issn.1002-025X.2013.03.001
    李兴霞, 赵干. STT焊接技术的研究与应用现状[J]. 焊管, 2013, 36(4): 23 − 26. doi: 10.3969/j.issn.1001-3938.2013.04.005

    Li Xingxia, Zhao Gan. Research and application status of STT welding technology[J]. Welding Pipe and Tube, 2013, 36(4): 23 − 26. doi: 10.3969/j.issn.1001-3938.2013.04.005
    Furukawa K. New CMT arc welding process – welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets[J]. Welding International, 2006, 20(6): 440 − 445. doi: 10.1533/wint.2006.3598
    Prajapati V, Vora J J, Das S, et al. Experimental studies of regulated metal deposition (RMDTM) on ASTM A387 (11) steel: study of parametric influence and welding performance optimization[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(78): 1 − 21.
    Ueyama T. Development of low heat input and spatter reduction CO2/MAG alternating current welding system by controlled bridge transfer process[J]. Electric Welding Machine, 2009, 39(9): 10 − 13.
    Pickin C G, Young K. Evaluation of cold metal transfer (CMT) for welding aluminium alloy[J]. Science and Technology of Welding and Joining, 2006, 11(5): 583 − 585. doi: 10.1179/174329306X120886
    Teixeira G S, Mazzaferro J A E. GMA welding metal transfer mode study by high-speed imaging and electrical signal acquisition[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(8): 315 − 327. doi: 10.1007/s40430-019-1814-8
    刘静, 隋国欣, 王明山, 等. 机车车体Q345E钢Ar + CO2 + O2三元混合保护气体MAG焊接头的组织和性能[J]. 电焊机, 2017, 47(5): 104 − 108.

    Liu Jing, Sui Guoxin, Wang Mingshan, et al. Microstructure and mechanical properties of welded joints of MAG welding with Ar + CO2 + O2 ternary mixed shielding gas of steel Q345E for locomotive and rolling stock body[J]. Electric Welding Machine, 2017, 47(5): 104 − 108.
    Lincon L S, Tiago V C, Carlos E N B. Benefits from H2 and CO2 additions in argon gas mixtures in GMAW[J]. Journal of Materials Processing Technology, 2017, 249: 158 − 166. doi: 10.1016/j.jmatprotec.2017.05.030
    Vimalraj C, Kah P, Layus P, et al. High-strength steel S960QC welded with rare earth nanoparticle coated filler wire[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 105 − 119. doi: 10.1007/s00170-018-3059-6
    Methong T, Yamaguchi T, Shigeta M, et al. Effect of rare earth metal on plasma properties in GMAW using CO2 shielding gas[J]. Welding in the World, 2017, 61: 1039 − 1047.
    Wu H, Chang Y L, Lu L, et al. Review on magnetically controlled arc welding process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 4263 − 4273. doi: 10.1007/s00170-017-0068-9
    Luo Q, Lu D M, Luo J. Droplet transfer and microstructure of Q235 steel thick plate using CO2 welding with additional longitudinal magnetic field controlling[J]. Advanced Materials Research, 2010(102−104): 451 − 454.
    Nosov D G, Peremitko V V. Influence of frequency and induction of longitudinal magnetic field on the electrode metal loss and its spattering during MAG-welding[J]. IOP Conference Series: Materials Science and Engineering, 2015, 91: 12 − 18.
    常云龙, 杨殿臣, 魏来, 等. 外加横向磁场对高速TIG焊缝成形的影响[J]. 焊接学报, 2011, 32(3): 53 − 56.

    Chang Yunlong, Yang Dianchen, Wei Lai, et al. Influence of magnetic controlled technology on formation of high-speed TIG welding[J]. Transactions of the China Welding Institution, 2011, 32(3): 53 − 56.
    Chang Yunlong, Yang Xu, Che Xiaoping, et al. Grain refinement and improved properties through electromagnetic stirring in Al alloy MIG welds[J]. China Welding, 2008, 17(3): 77 − 80.
    Liu Y B, Sun Q J, Wang H, et al. Effect of the axial external magnetic field on copper/aluminium arc weld joining[J]. Science and Technology of Welding and Joining, 2016, 21(6): 460 − 465.
    江淑园, 陈焕明, 熊震宇. 外加磁场对CO2焊接焊缝成形的影响[J]. 焊接技术, 2006(2): 5 − 30.

    Jiang Shuyuan, Chen Huanming, Xiong Zhenyu. Effect of external magnetic field on the weld formation of CO2 welding[J]. Welding Technology, 2006(2): 5 − 30.
    罗键, 贾昌申, 王雅生, 等. 外加纵向磁场GTAW焊缝成形机理[J]. 焊接学报, 2001, 22(3): 19 − 22.

    Luo Jian, Jia Changshen, Wang Yasheng, et al. Mechanism of GTAW weld formation with external longitudinal magnetic field[J]. Transactions of the China Welding Institution, 2001, 22(3): 19 − 22.
  • Related Articles

    [1]LI Dayong, WANG Ping, ZHANG Guangjun. Comparative study on arc shape and droplet transfer under different shielding gas compositions of Ar/He/CO2 in pulsed GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 55-59. DOI: 10.12073/j.hjxb.2018390175
    [2]FAN Chenglei, XIE Weifeng, YANG Chunli, ZHUANG Xiaowei, LIN Sanbao. Effect of CO2 content for droplet transfer in ultrasound-MAG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 18-22.
    [3]JIANG Yuanning, CHEN Maoai, WU Chuansong. Synchronous acquisition and analysis of metal transfer images and electrical parameters in CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 63-66.
    [4]XIE Shengmian, WU Kaiyuan, WEN Yuanmei, GE Weiqing, HUANG Shisheng. Effects of pulse frequency on TCGMAW droplet transfer modes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 69-72.
    [5]XIANG Yuanpeng, CAO Biao. Effects of approximate entropy and droplet transfer frequency on process stability of CO2 short-circuiting welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 21-24.
    [6]ZHU Zhiming, WU Wenkai, CHEN Qiang. Molten droplet size control in short-circuiting CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 1-4.
    [7]WANG Bao, YANG Lin, WANG Yong. Observation and analysis of metal transfer phenomena for flux-cored electrodes in CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 77-80.
    [8]ZHU Zhi-ming, WU Wen-kai, CHEN Qiang. Detect and analysis of molten droplet in short-circuit arc welding based on high-speed charge coupled device camera[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 29-33.
    [9]Han Zandong, Du Dong, Zhang Renhao, et al, . Fuzzy and PID Control of Droplet Transfer Frequency in CO2 Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 21-24.
    [10]Yin Shuyan, Jiang Weiyan, Zheng Bing. REALIZATION OF APPLICABLE WELDING PROCESS WITH FREELY PROJECTED DROPLET TRANSFER IN PURE CO2 SHIELDED GAS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (3): 186-192.
  • Cited by

    Periodical cited type(3)

    1. 马汉勇,邹文凤,靖微. CO_2气体保护焊研究现状. 热加工工艺. 2025(01): 28-32 .
    2. 向婷,方振龙,李桓,张明瑞,王浩,高莹. 高效多丝熔化极气体保护焊(GMAW)工艺的研究现状及进展. 材料热处理学报. 2024(05): 1-13 .
    3. 邢志奇,刘硕,马国峰,陈静,鲁梦雄,刘峰. 附加纵向同步磁场下CO_2气体保护焊对熔滴飞溅的影响. 当代化工. 2023(12): 2808-2813 .

    Other cited types(7)

Catalog

    Article views (417) PDF downloads (19) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return