Advanced Search
ZHU Zhi-ming, WU Wen-kai, CHEN Qiang. Detect and analysis of molten droplet in short-circuit arc welding based on high-speed charge coupled device camera[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 29-33.
Citation: ZHU Zhi-ming, WU Wen-kai, CHEN Qiang. Detect and analysis of molten droplet in short-circuit arc welding based on high-speed charge coupled device camera[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 29-33.

Detect and analysis of molten droplet in short-circuit arc welding based on high-speed charge coupled device camera

More Information
  • Received Date: November 21, 2004
  • An experimental system to photograph molten droplet images by using a high-speed charge coupled device camera and to record welding current and arc voltage in phase was established.After the definition of molten droplet size in short-circuit transfer mode was given and the analysis system for molten droplet size and arc signals based on MATLAB platform was introduced,the characteristic of molten droplet size in short-circuit CO2 arc welding using the power supply with constant voltage output,the relationship between the molten droplet size and the welding process behavior were investigated.The experimental results show that the molten droplet size presents normal distribution between 1 and 2 times of wire electrode diameter.The excessive large or small size in molten droplet are all unfavorable to the stability of welding process in short-circuit transfer mode.According to the formation and transfer course of molten droplet,the main influence factors to the molten droplet size are analyzed and the approaches to control the droplet size are proposed.Namely,the random characteristic of the residual liquid metal quantity at the end of wire electrode after the completion of short-circuit transfer and the arc energy induces the uncertainty of molten droplet size.(making effective control on them will increase the accordance of molten droplet size and short-circuit transfer procedure,and improve the process behavior and welding quality of short-circuit CO2 arc welding further.)
  • Related Articles

    [1]BAO Liangliang, WANG Yong, ZHANG Hongjie, XU Liang, HAN Tao. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 26-33. DOI: 10.12073/j.hjxb.20201207002
    [2]CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004
    [3]LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17.
    [4]WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72.
    [5]WANG Zheng, GUI Chibin, CHEN Wenjun. Numerical analysis of hydrogen traps thermal desorption in weld thermal cycle[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 100-104.
    [6]LI Xiaoquan, TENG Yalan, CHU Yajie, YANG Zonghui. Influence of welding thermal cycle on micro-structural brittleness of T92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 9-12.
    [7]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107.
    [8]YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100.
    [9]XU Xue-li, XIN Xi-xian, SHI Kai, ZHOU Yong. Influence of welding thermal cycle on toughness and microstructure in grain-coarsening region of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 69-72.
    [10]Yin Shike, Wang Yishan, Guo Huaili. Influnce of weld thermal cycle on properties of 10Ni5CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (3): 147-153.

Catalog

    Article views (217) PDF downloads (70) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return