Advanced Search
WANG Leilei, ZHANG Zhanhui, XU Dewei, XUE Jiaxiang, ZENG Min. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 137-140. DOI: 10.12073/j.hjxb.2019400114
Citation: WANG Leilei, ZHANG Zhanhui, XU Dewei, XUE Jiaxiang, ZENG Min. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 137-140. DOI: 10.12073/j.hjxb.2019400114

Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing

More Information
  • Received Date: December 01, 2017
  • Arc additive manufacturing has the advantages of low cost and high efficiency. However, there are few reports on grain refinement. Double pulsed arc additive manufacturing experiments were carried out by using self-developed gas metal arc welding equipment, grain refinement phenomenon was predicted by using the cooling rate; experimental results also verified the grain refinement phenomenon. Results indicated that remelting phenomenon occurred near the trailing edge due to the expansion of the molten pool. Therefore, double pulsed arc features higher cooling rate and finer grain than conventional single pulsed arc under same heat input. Grain refinement could be achieved by changing pulsing parameters instead of conventionally changing heat input.
  • Miao Yugang, Zeng Yang, Wang Teng, et al. Additive manufacturing process of aluminum/steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 5 − 8
    苗玉刚, 曾 阳, 王 腾, 等. 基于BC-MIG焊的铝/钢异种金属增材制造工艺[J]. 焊接学报, 2015, 36(7): 5 − 8
    柏久阳, 范成磊, 杨雨晨, 等. 2219铝合金TIG填丝堆焊成形薄壁试样组织特征[J]. 焊接学报, 2016, 37(6): 124 − 128
    Bai Jiuyang, Fan Chenglei, Yang Yuchen, et al. Microstructures of 2219-Al thin-walled parts produced by shaped metal deposition[J]. Transactions of the China Welding Institution, 2016, 37(6): 124 − 128
    Zhang Yu, Luo Zhen, Tan Hui, et al. Hybrid 3D processing technology based on build-up welding and electrolytic machining[J]. Transactions of the China Welding Institution, 2015, 36(8): 39 − 42
    张 禹, 罗 震, 谈 辉, 等. 基于堆焊-电解的复合3D加工技术[J]. 焊接学报, 2015, 36(8): 39 − 42
    刘一搏, 孙清洁, 姜云禄, 等. 基于冷金属过渡技术快速成形工艺[J]. 焊接学报, 2014, 35(7): 1 − 4
    Liu Yibo, Sun Qingjie, Jiang Yunlu, et al. Rapid prototyping process based on cold metal transfer arc welding technology[J]. Transactions of the China Welding Institution, 2014, 35(7): 1 − 4
    柏久阳, 王计辉, 林三宝, 等. 铝合金电弧增材制造焊道宽度尺寸预测[J]. 焊接学报, 2015, 36(9): 87 − 90
    Bai Jiuyang, Wang Jihui, Lin Sanbao, et al. Width prediction of aluminium alloy weld additively manufactured by TIG arc[J]. Transactions of the China Welding Institution, 2015, 36(9): 87 − 90
    柏久阳, 范成磊, 林三宝, 等. 基板散热作用对电弧堆焊成形中熔宽调控的影响[J]. 焊接学报, 2016, 37(3): 115 − 119
    Bai Jiuyang, Fan Chenglei, Lin Sanbao, et al. Effects of base-plate's heat sink on the control strategies of weld width during GTA-additive manufacturing[J]. Transactions of the China Welding Institution, 2016, 37(3): 115 − 119
    David S A, Vitek J M. Correlation between solidification parameters and weld microstructures[J]. International Materials Rev-iews, 1989, 34(1): 213 − 245.
  • Related Articles

    [1]SHU Fengyuan, NIU Sicheng, HE Peng, SUI Shaohua, ZHANG Xiaodong. Research progress of high-entropy amorphous materials and their additive manufacturing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 1-8. DOI: 10.12073/j.hjxb.20201203001
    [2]CHEN Qihao, LIN Sanbao, YANG Chunli, FAN Chenglei, YAN Jiuchun. Effect of different ultrasonic action stages on grain crystallization in TIG weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 29-32, 44. DOI: 10.12073/j.hjxb.20190826001
    [3]YUAN Tao1, CHEN Shujun1, LUO Zhen2, ZHANG Yu2. A grain refining method of Al alloy welds with ultrasonic stirring[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 21-24. DOI: 10.12073/j.hjxb.2018390114
    [4]WANG Tao, ZHENG Zhentai, DONG Tianshun, ZHANG Lisheng. Effect of welding parameters on grain size in Inconel601H nickel-based alloy weld by P-TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 109-112.
    [5]QI Yongai, ZHAO Jianfeng, XIE Deqiao, LI Yue. Fining grain of FGH95 nickel-based superalloy laser cladding layer by ultrasonic impact treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 59-62.
    [6]ZHANG Min, LÜ Jinbo, LÜ Na, LI Jihong. Welding material for TA1 and structure refining of its welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 45-48.
    [7]ZHOU Fang-ming, QIAN Yi-yu, ZHANG Jing, LI GUI-peng. Grain refinement mechanism of gas tungsten arc welded joint of tantalum thin walled tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 41-44,48.
    [8]SHEN Yi-fu, FENG Shang-long, Ll Jin-xin, HUANG Yin-hui, YU Cheng-ye, YANG Min-chuan. Nanocrystalline WC/Co grains refined by laser sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 9-11.
    [9]LEI Yi, LI Hai, LIU Zhi Yi. Super-fine grain refining and mechanical properties of 20Mn2 Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 17-20.
    [10]GUO Xu-ming, QIAN Bai-nian, ZHANG Yan, LI Jing-li, ZHU Ping. External Field Treatment Refining Microstructures of Pipe-line Steel SAW Weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (2): 27-30.
  • Cited by

    Periodical cited type(3)

    1. 马振,闫玉东,史畅,牟立婷,王龙权,邸可新,张二林. 医用钛合金激光表面改性抗菌涂层的研究进展. 焊接. 2025(01): 71-81 .
    2. 王伟志,马国政,韩珩,李洋,周雳,赵海朝,许建峰,郭伟玲,王海斗. 激光熔覆陶瓷涂层研究现状与展望. 机械工程学报. 2023(07): 92-109 .
    3. 周其龙,窦丽霞. 蚁群算法的激光熔覆工艺多目标优化研究. 激光杂志. 2022(09): 213-217 .

    Other cited types(4)

Catalog

    Article views (255) PDF downloads (25) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return