Advanced Search
GUO Yang, ZHANG Jianxun, XIONG Jiankun, LIU Yan, ZHAO Pengfei. Microstructure and properties of plasma arc additive repairing depositions for the worn rotor journal of power station equipment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 47-53. DOI: 10.12073/j.hjxb.20200201001
Citation: GUO Yang, ZHANG Jianxun, XIONG Jiankun, LIU Yan, ZHAO Pengfei. Microstructure and properties of plasma arc additive repairing depositions for the worn rotor journal of power station equipment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 47-53. DOI: 10.12073/j.hjxb.20200201001

Microstructure and properties of plasma arc additive repairing depositions for the worn rotor journal of power station equipment

More Information
  • Received Date: January 31, 2020
  • Available Online: December 14, 2020
  • In view of the in situ repairing requirements of rotor journal of power plant equipment, a non preheating single-layer and multi-passes additive depositing 316L alloy was achieved on 20Cr2NiMo steel by Micro Plasma Arc Depositing process. The microstructure, hardness, chemical composition and mechanical properties of deposition and heat affected zone were analyzed. The results show that the deposition is metallurgical bonded with the substrate, and there is no crack in the cladding layer and heat affected zone; the microstructure of 316L deposition consists of austenite + δ ferrite, and the primary heat affected zone can be divided into decarburization zone, coarse-grained zone, fine-grained zone and mixed crystalline zone, and the primary coarse-grained zone is coarsened, refined and softened due to the secondary heat cycle. The difference of hardness between 316L deposition and substrate is small, while the hardness of primary coarse-grained zone is the highest, but that of secondary coarse-grained zone below 476HV0.3, and the width of heat affected zone is about 2.5 mm; the shear strength of heat affected zone is higher than that of substrate, but the plasticity of substrate is better.
  • 叶荣学, 孙伟, 张艾萍, 等. 滑动轴承油膜厚度变化对汽轮机转子稳定性的影响[C]//第九届全国振动理论及应用学术会议, 2017: 1062-1067.

    Ye Rongxue, Sun Wei, Zhang Aiping, et al. The influence of oil film thickness of sliding bearing on the stability of steam turbine rotor[C]//The 9th National Conference on Vibration Theory and Application, 2017: 1062-1067.
    Shchurova A V. Modeling the turbine rotor journal restoration located on cylindrical surface of the supporting bearer[J]. Procedia Engineering, 2017, 206: 1142 − 1147. doi: 10.1016/j.proeng.2017.10.608
    赵景辉. 汽轮机转子轴颈划伤处理[J]. 电力安全技术, 2015(2): 10 − 11.

    Zhao Jinghui. Treatment of turbine rotor journal scratch[J]. Electric Safety Technology, 2015(2): 10 − 11.
    何新有. 汽轮机转子轴颈损伤原因分析及修复措施[J]. 发电设备, 2009, 23(3): 170 − 172. doi: 10.3969/j.issn.1671-086X.2009.03.005

    He Xinyou. Cause analysis of turbine rotor’s shaft neck damage and the repair[J]. Power Equipment, 2009, 23(3): 170 − 172. doi: 10.3969/j.issn.1671-086X.2009.03.005
    Aloraie A, Al-Mazrouee A, Price J W H, et al. Weld repair practices without post weld heat treatment for ferritic alloys and their consequences on residual stresses: a review[J]. International Journal of Pressure Vessels and Piping, 2010, 87: 127 − 133. doi: 10.1016/j.ijpvp.2010.02.001
    黄岚, 金硪馨. 1 000 MW汽轮机精加工转子轴颈微弧等离子堆焊研究[J]. 东方汽轮机, 2011(1): 21 − 25.

    Huang Lan, Jin Woxing. Study on micro-arc plasma deposition for finished rotor journal of 1 000 MW steam turbine[J]. Dongfang Turbine, 2011(1): 21 − 25.
    徐俊强, 彭勇, 刘智慧, 等. 等离子弧异质异构增材制造构件的组织与力学性能分析[J]. 焊接学报, 2019, 40(11): 119 − 124. doi: 10.12073/j.hjxb.2019400298

    Xu Junqiang, Peng Yong, Liu Zhihui, et al. Study on plasma arc additive manufacturing process of dissimilar steels with various composite structures[J]. Transactions of the China Welding Institution, 2019, 40(11): 119 − 124. doi: 10.12073/j.hjxb.2019400298
    中国机械工程学会焊接分会. 焊接手册[M]. 北京: 机械工业出版社, 2007.

    Welding Society of China Mechanical Engineering Society.Welding Manual[M]. Beijing: China Mechanical Industry Press, 2007.
    钟玉, 曹天兰, 梁刚, 等. 30Cr2Ni4MoV, 20Cr2NiMo和Cr2Ni2MoV材料的焊接性研究[J]. 东方汽轮机, 2012(2): 27 − 32.

    Zhong Yu, Cao Tianlan, Liang Gang, et al. Study on the weldability of 30Cr2Ni4MoV, 20Cr2NiMo and Cr2Ni2MoV materials[J]. Dongfang Turbine, 2012(2): 27 − 32.
    Yan C Y, Jiang X Y, yuan Y, et al. Cold cracking susceptibility of X100 pipeline steel[J]. China Welding, 2019, 28(3): 1 − 9.
    郭伟, 牛靖, 张建勋. 试样厚度对微冲剪试验结果的影响[J]. 焊接, 2012(5): 31 − 34. doi: 10.3969/j.issn.1001-1382.2012.05.008

    Guo Wei, Niu Jing, Zhang Jianxun. The influence of specimen thickness on the results of micro punching shear test[J]. Welding & Joining, 2012(5): 31 − 34. doi: 10.3969/j.issn.1001-1382.2012.05.008
    Mohammad J E, Reza Alizadeh, Reza M. Applicability of shear punch testing to the evaluation of hot tensile deformation parameters and constitutive analyses[J]. Journal of Materials Research and Technology, 2019, 8(1): 996 − 1002. doi: 10.1016/j.jmrt.2018.02.014
    Tomasz K, Konrad G, Wojciech S, et al. Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting[J]. Materials Science & Engineering A, 2018, 71: 64 − 73.
    Morteza S, Abbas E, Masoomeh E, et al. Interface microstructure across cladding of super duplex stainless steel with austenitic stainless steel buffer layer[J]. Surface & Coatings Technology, 2014, 259: 532 − 542.
    Wu Q J, Lu F G, Cui H C, et al. Soft zone formation by carbon migration and its effect onthe high-cycle fatigue in 9%Cr–CrMoV dissimilar welded joint[J]. Materials Letters, 2015, 141: 242 − 244. doi: 10.1016/j.matlet.2014.08.158
    王天剑, 黄菊, 张邦强, 等. 铬钼钢与巴氏合金摩擦磨损试验[J]. 大型铸锻件, 2009, 6: 11 − 14. doi: 10.3969/j.issn.1004-5635.2009.05.004

    Wang Tianjian, Huang Ju, Zhang Bangqiang, et al. Friction and wear test of Cr Mo steel and Babbitt alloy[J]. Heavy Castings and Forgings, 2009, 6: 11 − 14. doi: 10.3969/j.issn.1004-5635.2009.05.004
    Guduru R K, Darling K A, Kishore R, et al. Evaluation of mechanical properties using shear–punch testing[J]. Materials Science and Engineering A, 2005, 395: 307 − 314. doi: 10.1016/j.msea.2004.12.048
    Foletti S, Madia M, Cammi A, et al. Characterization of the behavior of a turbine rotor steel by inverse analysis on the small punch test[J]. Procedia Engineering, 2011(10): 3628 − 3635.
    潘超锋, 潘慧斌. 汽轮机转子输出端强度计算与校核[J]. 热力透平, 2017, 46(4): 46 − 49.

    Pan Chaofeng, Pan Huibin. Strength calculation and check of turbine rotor output end[J]. Thermal Turbine, 2017, 46(4): 46 − 49.
    Li S, Ren S, Zhang Y, et al. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints[J]. Journal of Materials Processing Technology, 2017, 244: 240 − 252. doi: 10.1016/j.jmatprotec.2017.01.033
  • Related Articles

    [1]WENG Shuo, ZHOU Xiaoyang, LUO Linghua, YUAN Yiwen, FENG Jinzhi, SHAO Shanshan. Fatigue failure mechanism analysis and life prediction methods of fillet welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240427002
    [2]ZHOU Shaoze, GUO Shuo, CHEN Bingzhi, ZHANG Jun, ZHAO Wenzhong. Master S-N curve fitting and life prediction method for very high cycle fatigue of welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 76-82. DOI: 10.12073/j.hjxb.20211116002
    [3]CHEN Bingzhi, HE Zhengping, LI Xiangwei, ZHAO Wenzhong. Comparison of fatigue life predicting methods used in cracked welded component[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 63-68. DOI: 10.12073/j.hjxb.20210824001
    [4]WANG Jujin, YANG Guangwu, YANG Bing, WANG Feng. S-N curve analysis of ring welding based on structural stress method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 63-68. DOI: 10.12073/j.hjxb.2019400210
    [5]WEI Guoqian, YUE Xudong, DANG Zhang, HE Yibin. S-N and IEFM combined fatigue life analysis for welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 23-27.
    [6]LIN Liexiong, LU Hao, XU Jijin, CHENG Zhewen. Measuring residual stress of chain based on the method of digital image correlation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 55-58.
    [7]FENG Chao, LIANG Jin, GUO Nan, LIU Liejin. Measurement of sheet welding buckling deformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 61-64.
    [8]WAN Chuhao, GANG Tie, LIU Bin. Nonlinear ultrasonic evaluation of fatigue life of aluminum alloy welded joint based on pulse-inversion technique[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 27-30,34.
    [9]ZHAO Wenzhong, WEI Hongliang, FANG Ji, LI Jitao. The theory and application of the virtual fatigue test of welded structures based on the master S-N curve method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 75-78.
    [10]FAN Wenxue, CHEN Furong, XIE Ruijun, GAO Jian. Fatigue life prediction of transverse cross welded joint based on different S - N curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 69-72.

Catalog

    Article views (457) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return