Advanced Search
SU Xiaohu, LI Zhuoxin, LI Hong, JinKim Hee, MENG Bo. Microstructure to properties of coarse grained heat affected zone in deposited weld metal of metal cored wire E120C-K4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 48-53. DOI: 10.12073/j.hjxb.2019400262
Citation: SU Xiaohu, LI Zhuoxin, LI Hong, JinKim Hee, MENG Bo. Microstructure to properties of coarse grained heat affected zone in deposited weld metal of metal cored wire E120C-K4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 48-53. DOI: 10.12073/j.hjxb.2019400262

Microstructure to properties of coarse grained heat affected zone in deposited weld metal of metal cored wire E120C-K4

More Information
  • Received Date: August 20, 2018
  • Available Online: July 12, 2020
  • The effect of microstructure as a function of welding cooling time (t8/5) from 800 °C to 500 °C on the impact toughness of coarse grained heat affected zone (CGHAZ) of deposited metal of metal cored wire E120C-K4 was investigated by welding thermal simulation. The results showed that the microstructure of CGHAZ was mainly composed of degenerate upper bainite (DUB) granular bainite (GB) and Acicular ferrite(AF) at t8/5 from 6 s to 12 s, forming the interlace multiphase microstructure, then the optimal impact toughness was obtained. The microstructure of CGHAZ formed with granular bainite (GB) and Acicular ferrite(AF) and the impact toughness decreased when t8/5 from 30 s to 120 s. The absorbed energy of CGHAZ was only 24 J at −40 °C at t8/5 of 120 s, the worst impact toughness. The key of improving impact toughness at t8/5 from 6 s to 12 s was: ① forming the interlace multiphase microstructure; ② refining grains; ③ more high-angle grain boundaries per unit distance.
  • Zhang T, Li Z, Young F, et al. Global progress on welding consumables for HSLA steel[J]. Transactions of the Iron & Steel Institute of Japan, 2014, 54(7): 1472 − 1484.
    周灿丰, 焦向东, 陈家庆, 等. 海底管道J形铺设焊接技术[J]. 焊接, 2019(8): 21 − 24.

    Zhou Canfeng, Jiao Xiangdong, Chen Jiaqing, et al. Sub-sea pipeline J-lay welding technology[J]. Welding & Joing, 2019(8): 21 − 24.
    Mohrbacher H. Combined effects of nb and b microalloying in molybdenum based ultra low carbon bainitic (ULCB) steels[J]. Journal of Iron & Steel Research, 2011(S1): 785 − 791.
    张元杰, 彭 云, 马成勇, 等. Q890高强钢焊接淬硬倾向和冷裂纹敏感性[J]. 焊接学报, 2013, 34(6): 53 − 56.

    Zhang Yuanjie, Peng Yun, Ma Chengyong, et al. Harden quenching tendency and cold cracking susceptibility of Q890 steel during welding[J]. Transactions of the China Welding Institution, 2013, 34(6): 53 − 56.
    Zhang T, Li Z, Ma S, et al. High strength steel (600–900 MPa) deposited metals: microstructure and mechanical properties[J]. Science & Technology of Welding & Joining, 2016, 21(3): 1 − 8.
    Liu C, Bhole S D. Challenges and developments in pipeline weldability and mechanical properties[J]. Science & Technology of Welding & Joining, 2013, 18(2): 169 − 181.
    张灵芝, 徐学利, 李 光, 等. X100管线钢埋弧焊缝焊接热影响区组织性能研究[J]. 热加工工艺, 2014(17): 37 − 40.

    Zhang Lingzhi, Xu Xueli, Li Guang, et al. Microstructure and properties of welding heat affected zone of X100 pipeline steel submerged arc weld[J]. Hot Working Technology, 2014(17): 37 − 40.
    Bhadeshia H K D H, Bainite in steels. 2nd Ed. [M]. London: Institute of Materials, 2001.
    Keehan E, Karlsson L, Bhadeshia H K D H, et al. Electron backscattering diffraction study of coalesced bainite in high strength steel weld metals[J]. Materials Science and Technology, 2008, 24(10): 1183 − 1188. doi: 10.1179/174328407X226572
    安同邦, 田志凌, 单际国, 等. 保护气对1000 MPa级熔敷金属组织及力学性能的影响[J]. 金属学报, 2015, 51(12): 1489 − 1499. doi: 10.11900/0412.1961.2015.00294

    An Tongbang, Tian Zhiling, Shan Jiguo, et al. Effect of shielding gas on micrpstructure and performance of 1000 MPa grade deposited metals[J]. Acta Metallurgica Sinica, 2015, 51(12): 1489 − 1499. doi: 10.11900/0412.1961.2015.00294
    王惜宝. 材料加工物理[M]. 天津: 天津大学出版社, 2011.
    戴起勋. 金属材料学[M]. 北京: 化学工业出版社, 2005.
    张文钺. 焊接冶金学:基本原理[M]. 北京: 机械工业出版社, 2004.
    Casalino G, Campanelli S L, Ludovico A D. Laser-arc hybrid welding of wrought to selective laser molten stainless steel[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(1–4): 209 − 216. doi: 10.1007/s00170-012-4721-z
    Lan L, Qiu C, Zhao D, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel[J]. Materials Science & Engineering A, 2011, 529(1): 192 − 200.
    Lambert A, Garat X, Sturel T, et al. Application of acoustic emission to the study of cleavage fracture mechanism in a HSLA steel[J]. Scripta Materialia, 2000, 43(2): 161 − 166. doi: 10.1016/S1359-6462(00)00386-9
    Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel[J]. Acta Materialia, 2004, 52(8): 2337 − 2348. doi: 10.1016/j.actamat.2004.01.025
  • Related Articles

    [1]MA Qiang, CHEN Mingxuan, MENG Junsheng, LI Chengshuo, SHI Xiaoping, PENG Xin. Microstructure and wear resistance of TiB2/Ni composite coating on pure copper surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 90-96. DOI: 10.12073/j.hjxb.20210202002
    [2]WANG Zhenting, FU Changjing, LIANG Gang, MENG Junsheng, WANG Xinzhi. In-situ synthesis of TiC-TiB2 anti-oxidation composite layer by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 103-107.
    [3]WANG Yongdong, LIU Xing, ZHENG Guanghai, ZHAO Xia. Microstructure and properties of in-situ synthesized TiC-TiB reinforced Fe based composite coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 67-70.
    [4]WANG Zhenting, GAO Hongming, LIANG Gang, DING Yuanzhu. Microstructure and wear resistance of Ti-based composite coating reinforced by in-situ synthesized TiC and TiB2 particulates on surface of Ti6Al4V alloy with arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 51-54.
    [5]MENG Junsheng, JI Zesheng. Microstructure and properties of in-situ TiC-TiB2/Ti composite coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 67-70.
    [6]WANG Xinhong, ZOU Zengda, QU Shiyao. Laser cladding of in-situ TiB_2-TiC particles reinforced Fe-based coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 25-28.
    [7]WANG Zhenting, DING Yuanzhu, LIANG Gang. Microstructure and wear resistance of in-situ synthesis TiB2-TiN particulates of composite coating reinforced titanium alloy surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 105-108.
    [8]LIU Junhai, HUANG Jihua, LIU Junbo, SONG Guixiang. TiC/Cr-Fe ceramal composite coating processed by PTA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 93-96.
    [9]HE Qingkun, WANG Yong, ZHAO Weimin, CHENG Yiyuan. Interface microstructure and wear properties of TiC-Ni-Mo coatings prepared by in-situ fabrication of laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 77-80100.
    [10]DU Baoshuai, LI Qingming, WANG Xinhong, ZOU Zengda. In situ synthesis of TiC-VC particles reinforced Fe-based metal matrix composite coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 65-68.
  • Cited by

    Periodical cited type(7)

    1. 张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
    2. 魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
    3. 刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
    4. 吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
    5. 马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 . 本站查看
    6. 王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 . 本站查看
    7. 陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .

    Other cited types(2)

Catalog

    Article views (181) PDF downloads (28) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return