Advanced Search
JIA Hua, LIU Zhengjun, LI Meng, ZHANG Kun. Effect of ceramic phase on microstructure and mechanical properties of ferrous matrix composite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 122-127. DOI: 10.12073/j.hjxb.2019400247
Citation: JIA Hua, LIU Zhengjun, LI Meng, ZHANG Kun. Effect of ceramic phase on microstructure and mechanical properties of ferrous matrix composite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 122-127. DOI: 10.12073/j.hjxb.2019400247

Effect of ceramic phase on microstructure and mechanical properties of ferrous matrix composite

  • In order to improve the wear resistance of the material surface, the Fe-Cr-C-B-N-Ti-based iron matrix composite was prepared on the Q235 matrix metal surface by using the bright arc surfacing technology. Metallographic microscope, scanning electron microscope, X ray diffractometer, Rockwell hardness tester and abrasive wear tester were used to analyze and test the microstructure and properties of iron-based composites. The results show that the matrix structure of iron-based composites is composed of martensite (M) and a small amount of retained austenite (A), and the hard phase is composed of TiB2, TiN, TiC, M23 (C, B)6, M3 (C, B) and M2B. With the increase of titanium addition, the hardness phase particles (TiB 2, TiN and TiC) and eutectic hard phase (M23 (C, B)6, M3 (C, B) and M2B) increase, and the matrix structure decreases and refine. When the amount of titanium is 4%, the wear resistance of the iron matrix composite is the best, at this time the hardness is 66HRC and the wear amount is 0.042 9 g.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return