Advanced Search
DAI Chenyu, ZHONG Shuncong, TANG Changming, FU Xinbin, HUANG Xuebin. Failure analysis of thermal barrier coatings based on cohesive element and XFEM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 138-143. DOI: 10.12073/j.hjxb.2019400222
Citation: DAI Chenyu, ZHONG Shuncong, TANG Changming, FU Xinbin, HUANG Xuebin. Failure analysis of thermal barrier coatings based on cohesive element and XFEM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 138-143. DOI: 10.12073/j.hjxb.2019400222

Failure analysis of thermal barrier coatings based on cohesive element and XFEM

More Information
  • Received Date: July 19, 2018
  • In order to better understand the failure mechanism of the thermal barrier coating, the ABAQUS finite element software was used to analyze the failure of the thermal barrier coating. Cohesive element and extended finite element (XFEM) were used to study the cracking of the TGO interface in the thermal barrier coating and the initiation and propagation of random cracks in the ceramic coating (TC) and the oxidation layer (TGO). The relationship between vertical cracks and horizontal cracks was studied. The results shown that the cracking of the TGO interface of the thermal barrier coating first occurred at the TGO/TBC trough, and the initiation of the random cracks in the ceramic coating and the oxidation layer also occurred at the TGO/TBC trough. The existence of the vertical crack could inhibit the initiation and propagation of the horizontal crack, and the propagation lengths at the TGO/TBC trough was longer than that of the TGO/TBC crest. It indicated that the TGO/TBC trough area was a dangerous area, which was likely to cause crack initiation and propagation in this area.
  • 薛召露,郭洪波,宫声凯,等.新型热障涂层陶瓷隔热层材料[J].航空材料学报, 2018, 38(2):10-20 Xue Zhaolu, Guo Hongbo, Gong Shengkai, et al. Novel ceramic materials for thermal barrier coatings[J]. Journal of Aeronautical Materials, 2018, 38(2):10-20
    韩志勇,张华,王志平,等. TGO界面特征对热障涂层残余应力的影响[J].焊接学报, 2012, 33(12):33-36 Han Zhiyong, Zhang Hua, Wang Zhiping, et al. Effect of interfacial characteristics of TGO on residual stress of thermal barrier coatings[J]. Transactions of the China Welding Institution, 2012, 33(12):33-36
    张玉娟,张玉驰,孙晓峰,等.热障涂层的发展现状[J].材料保护, 2004, 37(6):26-29 Zhang Yujuan, Zhang Yuchi, Sun Xiaofeng, et al. Development status of thermal barrier coatings[J]. Materials Protection, 2004, 37(6):26-29
    Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284.
    Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5):505-553.
    曹学强.热障涂层材料(精)[M].北京:科学出版社, 2007.
    周益春,刘奇星,杨丽,等.热障涂层的破坏机理与寿命预测[J].固体力学学报, 2010, 31(5):504-531 Zhou Yichun, Liu Qixing, Yang Li, et al. Failure mechanism and life prediction of thermal barrier coatings[J]. Acta Mechanica Solida Sinica, 2010, 31(5):504-531
    Bhatnagar H, Ghosh S, Walter M E. A parametric study of damage initiation and propagation in EB-PVD thermal barrier coatings[J]. Mechanics of Materials, 2010, 42(1):96-107.
    Caliez M, Chaboche J L, Feyel F, et al. Numerical simulation of EBPVD thermal barrier coatings spallation[J]. Acta Materialia, 2003, 51(4):1133-1141.
    Soulignac R, Maurel V, Rémy L, et al. Cohesive zone modelling of thermal barrier coatings interfacial properties based on three-dimensional observations and mechanical testing[J]. Surface&Coatings Technology, 2013, 237:95-104.
    Hille T S, Nijdam T J, Suiker A S J, et al. Damage growth triggered by interface irregularities in thermal barrier coatings[J]. Acta Materialia, 2009, 57(9):2624-2630.
    Hille T S, Suiker A S J, Turteltaub S. Microcrack nucleation in thermal barrier coating systems[J]. Engineering Fracture Mechanics, 2009, 76(6):813-825.
    Ranjbar-Far M, Absi J, Mariaux G, et al. Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies[J]. Materials&Design, 2011, 32(10):4961-4969.
    Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solid, 1960, 8(2):100-104.
    Barenblatt G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics&Mechanics, 1959, 23(3):622-636.
    付宾,杨晓翔.炭黑颗粒填充橡胶复合材料界面脱粘数值分析[J].福州大学学报(自然科学版), 2018, 46(3):386-390 Fu Bin, Yang Xiaoxiang. Numerical analysis of interfacial debonding of carbon black particle filled rubber composites[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(3):386-390
    Pan D, Chen M W, Wright P K, et al. Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling[J]. Acta Materialia, 2003, 51(8):2205-2217.
    Ranjbar-Far M, Absi J, Mariaux G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J]. Materials&Design, 2010, 31(2):772-781.
    Ranjbar-Far M, Absi J, Shahidi S, et al. Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings system[J]. Materials&Design, 2011, 32(2):728-735.
    陈宇慧,陈丹阳,钟舜聪,等.基于热-结构耦合等离子喷涂热障涂层循环应力分布[J].机电工程, 2013, 30(8):905-908 Chen Yuhui, Chen Danyang, Zhong Shuncong, et al. Based on the cyclic stress distribution of thermal-structural coupled plasma spraying thermal barrier coatings[J]. Journal of Mechanical&Electrical Engineering, 2013, 30(8):905-908
    Al-Athel K, Loeffel K, Liu H, et al. Modeling decohesion of a top-coat from a thermally-growing oxide in a thermal barrier coating[J]. Surface&Coatings Technology, 2013, 222(6):68-78.
    Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1995, 45(5):601-620.
    Melenk J M, Babuska I. Approximation with harmonic and generalized harmonic polynomials in the partition of unity method[J]. Computer Assisted Mechanics&Engineering Sciences, 1997, 4(3):607-632.
    Kyaw S T, Jones I A, Hyde T H. Simulation of failure of air plasma sprayed thermal barrier coating due to interfacial and bulk cracks using surface-based cohesive interaction and extended finite element method[J]. Journal of Strain Analysis for Engineering Design, 2016, 51(2):132-143.
    Bäker M. Finite element simulation of interface cracks in thermal barrier coatings[J]. Computational Materials Science, 2012, 64(3):79-83.
    Yu Q M, Zhou H L, Wang L B. Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system[J]. Ceramics International, 2016, 42(7):8338-8350.
    Zhe L U, Kim M S, Myoung S W, et al. Thermal stability and mechanical properties of thick thermal barrier coatings with vertical type cracks[J]. Transactions of Nonferrous Metals Society of China, 2014, 24:s29-s35.
  • Related Articles

    [1]LU Yongxin1,2,3, LI Xiao1, JING Hongyang2,3, XU Lianyong2,3, HAN Yongdian2,3. Finite element simulation of carbon steel welded joint corrosion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 10-14. DOI: 10.12073/j.hjxb.2018390112
    [2]YANG Jianguo, LEI Jing, HE Yanming, ZHANG Tong, GAO Zengliang. Quiet element method of C276 alloy plate multi-pass welding based on finite element method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 27-30,84.
    [3]TIAN Peng, CHEN Zhen. Application of 3D shell element in welding thermal elastic-plastic finite element analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 99-102,112.
    [4]ZHAO Sheng, CHEN Zhen, LUO Yu. Application of high order elements in welding thermal elastic-plastic finite element analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 54-58.
    [5]ZHANG Lixia, FENG Jicai. Finite element simulation of thermal stress on brazed K24 nickel-based joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 29-32.
    [6]ZHU Miaofeng, LU Fenggui, CHEN Yunxia, YAO Shun. Finite element analysis on laser welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 97-100.
    [7]QIU Chang-jun, ZHOU Wei, HE Bin, FAN Xiang-fang. Study and finite element method analysis for bond strength of high-strength coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 105-107.
    [8]ZHANG Hong-wu, ZHANG Zhao, CHEN Jin-tao. Finite element analysis of friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 13-18.
    [9]DONG Ping, CHEN Yu-ze, ZOU Jue-sheng, YAN Yi-xia. Finite element simulation of a ring structurieon laser brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 51-54.
    [10]WU Yan-qing, PEI Yi, YANG Yong-xing, ZHANG Jian-xun. Finite Element Analysis of Transformation Super-plastic Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 65-68.
  • Cited by

    Periodical cited type(3)

    1. 常留红,郭洋,郑景琦,李飘,薛雄. 规则波作用下混凝土-环氧涂层界面气泡初始损伤演化. 中国海洋大学学报(自然科学版). 2025(02): 138-148 .
    2. 马玉娥,杨萌,孙文博. 基于近场动力学理论的热障涂层热冲击开裂行为. 航空学报. 2022(06): 238-247 .
    3. 李佐君,梁伟,钟舜聪,戴晨煜. TGO及初始裂纹对热障涂层裂纹形核与扩展影响的有限元分析. 失效分析与预防. 2021(05): 300-308+313 .

    Other cited types(5)

Catalog

    Article views (391) PDF downloads (45) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return