Citation: | XU Le, WEN Jianfeng, TU Shandung. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 80-88. DOI: 10.12073/j.hjxb.2019400213 |
Hyde T, Sun W, Williams J. Creep analysis of pressurized circumferential pipe weldments-a review[J]. The Journal of Strain Analysis for Engineering Design, 2003, 38(1):1-27.
|
Hyde T, Sun W, Becker A. Creep crack growth in welds:a damage mechanics approach to predicting initiation and growth of circumferential cracks[J]. International Journal of Pressure Vessels and Piping, 2001, 78(11-12):765-771.
|
Zhao L, Jing H, Xu L, et al. Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint[J]. Materials&Design, 2012, 34:566-575.
|
Baral J, Swaminathan J, Chakrabarti D, et al. Effect of welding on creep damage evolution in P91B steel[J]. Journal of Nuclear Materials, 2017, 490:333-343.
|
Li Y, Wang G, Xuan F, et al. Geometry and material constraint effects on creep crack growth behavior in welded joints[J]. High Temperature Materials and Processes, 2017, 36(2):155-162.
|
Starvin M, Ganesh K, Vasudevan M. Numerical simulation of creep behaviour of 316LN stainless steel weld joint[J]. Materials Today:Proceedings, 2018, 5(2):8193-8198.
|
Sklenička V, Kuchařová K, Svobodová M, et al. Creep properties in similar weld joint of a thick-walled P92 steel pipe[J]. Materials Characterization, 2016, 119:1-12.
|
张力文,钟玉平,李世乾,等. 304H焊接接头蠕变疲劳寿命预测[J].焊接学报, 2019, 40(1):156-160 Zhang Liwen, Zhong Yuping, Li Shiqian, et al. Life prediction of creep-fatigue for 304H with welded joints[J]. Transactions of the China Welding Institution, 2019, 40(1):156-160
|
Segle P, Tu S-T, Storesund J, et al. Some issues in life assessment of longitudinal seam welds based on creep tests with cross-weld specimens[J]. International Journal of Pressure Vessels and Piping, 1996, 66(1-3):199-222.
|
Himeno T, Chuman Y, Tokiyoshi T, et al. Creep rupture behaviour of circumferentially welded mod. 9Cr-1Mo steel pipe subject to internal pressure and axial load[J]. Materials at High Temperatures, 2016, 33(6):636-643.
|
Tu S T, Segle P, Gong J M. Creep damage and fracture of weldments at high temperature[J]. International Journal of Pressure Vessels and Piping, 2004, 81(2):199-209.
|
Jelwan J, Chowdhry M, Pearce G. Creep life forecasting of weldment[J]. Journal of Solid Mechanics, 2011, 3(1):42-63.
|
刘春娇,钱兵,陈学东,等.微合金化元素对离心铸造炉管焊接接头组织和性能影响[J].焊接学报, 2018, 39(9):76-82 Liu Chunjiao, Qian Bin, Chen Xuedong, et al. Effect of microalloying elements on the microstructural evolution and mechanical properties of weld joints of centrifugally cast furnace tubes[J]. Transactions of the China Welding Institution, 2018, 39(9):76-82
|
Jenney C L, O'Brien A. Welding handbook:welding science and technology[M]. Miami, America, American Welding Society, 2016.
|
Pandey C, Mahapatra M, Kumar P, et al. Effect of normalization and tempering on microstructure and mechanical properties of V-groove and narrow-groove P91 pipe weldments[J]. Materials Science and Engineering:A, 2017, 685:39-49.
|
张建强,张国栋,郭嘉琳. HR3C/T91异种耐热钢焊接接头界面蠕变失效有限元模拟[J].焊接学报, 2017, 38(10):11-15 Zhang Jianqiang, Zhang Guodong, Guo Jialin. Finite element simulation of interfacial creep failure of welded joints of HR3C/T91 heat resistant steel[J]. Transactions of the China Welding Institution, 2017, 38(10):11-15
|
Zhao L, Jing H, Han Y, et al. Prediction of creep crack growth behavior in ASME P92 steel welded joint[J]. Computational Materials Science, 2012, 61:185-193.
|
Yatomi M, Tabuchi M. Issues relating to numerical modelling of creep crack growth[J]. Engineering Fracture Mechanics, 2010, 77(15):3043-3052.
|
Wen J F, Tu S T. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014, 123:197-210.
|
Yatomi M, Nikbin K M, O'Dowd N P. Creep crack growth prediction using a damage based approach[J]. International Journal of Pressure Vessels&Piping, 2003, 80(7):573-583.
|
Wen J F, Tu S T, Gao X L, et al. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model[J]. Engineering Fracture Mechanics, 2013, 98:169-184.
|
Chen G, Wang G, Xuan F, et al. Effects of HAZ widths on creep crack growth properties of welded joints[J]. Welding in the World, 2015, 59(6):851-860.
|
Aleksandr Sergeevich B, Chang Y, Igor Aleksandrovich B. Identification welding parameters using complex criteria of quality[J]. China Welding, 2004, 26(4):1-9.
|
Sugiura R, Yokobori Jr A T, Suzuki K, et al. Characterization of incubation time on creep crack growth for weldments of P92[J]. Engineering Fracture Mechanics, 2010, 77(15):3053-3065.
|
Chen G, Wang G, Zhang J, et al. Effects of initial crack positions and load levels on creep failure behavior in P92 steel welded joint[J]. Engineering Failure Analysis, 2015, 47:56-66.
|
[1] | XU Zhiwu, LI Zhengwei, FENG Yan, YAN Jiuchun. Microstructure and mechanical properties of Mg/Al friction stir lap welding joint assisted by stationary shoulder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 1-6. DOI: 10.12073/j.hjxb.20170401 |
[2] | MAO Yuqing, KE Liming, HUANG Bin, LIU Fencheng. Effect of shoulder profile on plastic flow of weld metal in aluminum alloys friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 27-32. |
[3] | MAO Yuqing, KE Liming, LIU Fencheng, LIU Qiang. Effect of pin eccentricity on flow behavior of plastic material in friction stir welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 51-56. |
[4] | WANG Weibing, LUAN Guohong, ZHANG Kun, ZHAO Huaxia. Fundamental model of plastic material flow in FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 71-74. |
[5] | WANG Xijing, XU Youwei, ZHANG Liangliang, WEI Wankui. Plastic metal flow characteristic and fracture behaviors of DP600/AZ31 with non-keyhole friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 57-60,70. |
[6] | JI Shude, MENG Qingguo, SHI Qingyu, ZHANG Liguo, ZOU Aili. Numerical simulation of metal plastic flow in friction stir welding affected by pin shape[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 93-96. |
[7] | YU Yong-zheng, LUO Yu, LUAN Guo-hong, SUN Cheng-bin. Metal flow behavier in friction stir welding of LF6 aluminum alloy and LD10 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 115-118. |
[8] | YU Yong-zheng, LUO Yu, LUAN Guo-hong. Factors affecting on metal plastic flow during friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 117-120. |
[9] | ZHANG Hua, LIN San bao, WU Lin, FENG Ji cai, LUAN Guo hong. Current progress and prospect of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 91-96. |
[10] | Du Suigeng, Liu Xiaowen, Wu Shichun, Li Xiaoxia. Plastic Flow Equation of Weld Metal during Quasi-steady Friction Stage[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 219-224. |