Advanced Search
XU Le, WEN Jianfeng, TU Shandung. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 80-88. DOI: 10.12073/j.hjxb.2019400213
Citation: XU Le, WEN Jianfeng, TU Shandung. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 80-88. DOI: 10.12073/j.hjxb.2019400213

Numerical simulations of creep damage and crack growth in P92 steel welded joints

More Information
  • Received Date: November 10, 2018
  • Premature failures caused by creep damage occurred frequently in high-temperature steam pipes welded joints. Therefore, it is of great significance to predict the evolution of creep damage and crack growth behaviors in order to ensure structural integrity of high-temperature equipment. This paper investigated the effects of structural factors to creep failure behaviors of thick-wall welded joints using finite element methods based on a ductility exhaustion model. It is shown that the width of heat affected zone would affect the creep crack initiation and growth behavior. The width of fine grain heat affected zone (FGHAZ) had little effect on the crack initial time, but it would change the initial location of the crack. In comparison, the width of coarse grain heat affected zone (CGHAZ) had slightly larger effect on the crack initial time. Four welded joints with different groove types exhibited different crack initiation and growth behaviors. Double V type groove was considered to be an optimal choice in four groove types.
  • Hyde T, Sun W, Williams J. Creep analysis of pressurized circumferential pipe weldments-a review[J]. The Journal of Strain Analysis for Engineering Design, 2003, 38(1):1-27.
    Hyde T, Sun W, Becker A. Creep crack growth in welds:a damage mechanics approach to predicting initiation and growth of circumferential cracks[J]. International Journal of Pressure Vessels and Piping, 2001, 78(11-12):765-771.
    Zhao L, Jing H, Xu L, et al. Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint[J]. Materials&Design, 2012, 34:566-575.
    Baral J, Swaminathan J, Chakrabarti D, et al. Effect of welding on creep damage evolution in P91B steel[J]. Journal of Nuclear Materials, 2017, 490:333-343.
    Li Y, Wang G, Xuan F, et al. Geometry and material constraint effects on creep crack growth behavior in welded joints[J]. High Temperature Materials and Processes, 2017, 36(2):155-162.
    Starvin M, Ganesh K, Vasudevan M. Numerical simulation of creep behaviour of 316LN stainless steel weld joint[J]. Materials Today:Proceedings, 2018, 5(2):8193-8198.
    Sklenička V, Kuchařová K, Svobodová M, et al. Creep properties in similar weld joint of a thick-walled P92 steel pipe[J]. Materials Characterization, 2016, 119:1-12.
    张力文,钟玉平,李世乾,等. 304H焊接接头蠕变疲劳寿命预测[J].焊接学报, 2019, 40(1):156-160 Zhang Liwen, Zhong Yuping, Li Shiqian, et al. Life prediction of creep-fatigue for 304H with welded joints[J]. Transactions of the China Welding Institution, 2019, 40(1):156-160
    Segle P, Tu S-T, Storesund J, et al. Some issues in life assessment of longitudinal seam welds based on creep tests with cross-weld specimens[J]. International Journal of Pressure Vessels and Piping, 1996, 66(1-3):199-222.
    Himeno T, Chuman Y, Tokiyoshi T, et al. Creep rupture behaviour of circumferentially welded mod. 9Cr-1Mo steel pipe subject to internal pressure and axial load[J]. Materials at High Temperatures, 2016, 33(6):636-643.
    Tu S T, Segle P, Gong J M. Creep damage and fracture of weldments at high temperature[J]. International Journal of Pressure Vessels and Piping, 2004, 81(2):199-209.
    Jelwan J, Chowdhry M, Pearce G. Creep life forecasting of weldment[J]. Journal of Solid Mechanics, 2011, 3(1):42-63.
    刘春娇,钱兵,陈学东,等.微合金化元素对离心铸造炉管焊接接头组织和性能影响[J].焊接学报, 2018, 39(9):76-82 Liu Chunjiao, Qian Bin, Chen Xuedong, et al. Effect of microalloying elements on the microstructural evolution and mechanical properties of weld joints of centrifugally cast furnace tubes[J]. Transactions of the China Welding Institution, 2018, 39(9):76-82
    Jenney C L, O'Brien A. Welding handbook:welding science and technology[M]. Miami, America, American Welding Society, 2016.
    Pandey C, Mahapatra M, Kumar P, et al. Effect of normalization and tempering on microstructure and mechanical properties of V-groove and narrow-groove P91 pipe weldments[J]. Materials Science and Engineering:A, 2017, 685:39-49.
    张建强,张国栋,郭嘉琳. HR3C/T91异种耐热钢焊接接头界面蠕变失效有限元模拟[J].焊接学报, 2017, 38(10):11-15 Zhang Jianqiang, Zhang Guodong, Guo Jialin. Finite element simulation of interfacial creep failure of welded joints of HR3C/T91 heat resistant steel[J]. Transactions of the China Welding Institution, 2017, 38(10):11-15
    Zhao L, Jing H, Han Y, et al. Prediction of creep crack growth behavior in ASME P92 steel welded joint[J]. Computational Materials Science, 2012, 61:185-193.
    Yatomi M, Tabuchi M. Issues relating to numerical modelling of creep crack growth[J]. Engineering Fracture Mechanics, 2010, 77(15):3043-3052.
    Wen J F, Tu S T. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014, 123:197-210.
    Yatomi M, Nikbin K M, O'Dowd N P. Creep crack growth prediction using a damage based approach[J]. International Journal of Pressure Vessels&Piping, 2003, 80(7):573-583.
    Wen J F, Tu S T, Gao X L, et al. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model[J]. Engineering Fracture Mechanics, 2013, 98:169-184.
    Chen G, Wang G, Xuan F, et al. Effects of HAZ widths on creep crack growth properties of welded joints[J]. Welding in the World, 2015, 59(6):851-860.
    Aleksandr Sergeevich B, Chang Y, Igor Aleksandrovich B. Identification welding parameters using complex criteria of quality[J]. China Welding, 2004, 26(4):1-9.
    Sugiura R, Yokobori Jr A T, Suzuki K, et al. Characterization of incubation time on creep crack growth for weldments of P92[J]. Engineering Fracture Mechanics, 2010, 77(15):3053-3065.
    Chen G, Wang G, Zhang J, et al. Effects of initial crack positions and load levels on creep failure behavior in P92 steel welded joint[J]. Engineering Failure Analysis, 2015, 47:56-66.
  • Cited by

    Periodical cited type(18)

    1. 王齐宏,李卓廷,李永俊,崔晓峰,李勇,胡磊. 轴向附加应力对P92钢管道接头蠕变的影响. 焊接. 2025(02): 91-96 .
    2. 赵雷,武言,徐连勇,韩永典,熊昱. 纳入拘束效应的焊接接头蠕变裂纹扩展速率预测方法. 机械工程学报. 2024(14): 126-138 .
    3. 靳达,王智春,韩哲文,于井会,王启冰,康举. 焊后热处理对T92/HR3C异种钢接头组织和力学性能的影响. 金属热处理. 2023(10): 102-108 .
    4. 焦广臣,占勇,温建锋. 考虑焊缝和母材不同材料特性的焊接平板疲劳裂纹扩展行为模拟. 焊接学报. 2023(11): 52-58+132 . 本站查看
    5. 陈勇,徐育烺,李勤涛,王业方,赵先锐,张梦贤. 焊后热处理消除管道环缝焊接残余应力的有限元模拟. 焊管. 2022(05): 41-47 .
    6. 高巍,纪冬梅,潘卫国,刘川槐. T91/TP347H异种钢焊接接头高温拉伸性能研究. 动力工程学报. 2022(07): 595-603+611 .
    7. 张禹,梁恩宝,孙中元,师学礼,常青. 超超临界1000MW机组P92钢焊接接头开裂原因分析及修复. 焊接技术. 2022(S1): 97-101 .
    8. 康举,王启冰,王智春,韩哲文,左月,张华,焦向东. 超超临界火电机组异种钢焊接接头高温断裂机理综述. 机械工程学报. 2022(24): 58-83 .
    9. 田超博,杨新岐,李胜利,唐文珅,李会军. CLAM钢搅拌摩擦焊接头高温蠕变行为. 焊接学报. 2021(02): 38-45+99-100 . 本站查看
    10. 韩笑,余海洋,周帼彦,涂善东. 基于固支直杆弯曲小试样的P91/P92钢蠕变性能对比评价研究. 压力容器. 2021(04): 1-10 .
    11. 刘洋. 大跨度管桁架Q345钢结构焊接应力变形研究. 城市建筑. 2021(18): 127-130 .
    12. 王闯,王学,章亚林,肖德铭. T92/HR3C异种钢接头的蠕变损伤演化. 焊接学报. 2021(07): 74-81+103 . 本站查看
    13. 王康康,王小威,温建锋,张显程,巩建鸣,涂善东. 蠕变断裂:从物理失效机制到结构寿命预测. 机械工程学报. 2021(16): 132-152 .
    14. 周梵,王学,孙松涛,郭美华. 升温速率对P91钢管道局部焊后热处理温度场的影响及参数优化. 焊接学报. 2021(10): 29-34+99 . 本站查看
    15. 金震杰,刘川槐,曹宇,陆一帆,潘卫国,纪冬梅. T91/TP347H异种钢焊接接头过热工况下蠕变损伤模型研究. 压力容器. 2021(09): 18-26+33 .
    16. 宋宇轩,余婷,秦富饶,高增梁. P92钢及其焊接接头的蠕变-疲劳寿命预测. 压力容器. 2021(11): 26-35 .
    17. 齐磊,张学伟,温建锋. 基于延性耗竭模型的边缘型穿透多裂纹干涉与合并分析. 压力容器. 2021(12): 44-52+83 .
    18. 杨文伟,索雅琪,陈鹏. 管桁结构直接焊接节点焊材损伤累积演化规律试验研究. 建筑结构学报. 2020(09): 188-197 .

    Other cited types(9)

Catalog

    Article views (524) PDF downloads (72) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return