Advanced Search
WANG Chuang, WANG Xue, ZHANG Yalin, XIAO Deming. Damage evolution of T92/HR3C dissimilar steel welded joints during creep[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 74-81. DOI: 10.12073/j.hjxb.20210106002
Citation: WANG Chuang, WANG Xue, ZHANG Yalin, XIAO Deming. Damage evolution of T92/HR3C dissimilar steel welded joints during creep[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 74-81. DOI: 10.12073/j.hjxb.20210106002

Damage evolution of T92/HR3C dissimilar steel welded joints during creep

More Information
  • Received Date: January 05, 2021
  • Available Online: August 30, 2021
  • A series of creep interrupt tests were carried out on the T92/HR3C dissimilar steel welded joint (DSWJ) at a temperature of 650 ℃ and a stress of 90 MPa. The microstructure and creep void damage of specimens with different creep life fractions were observed by OM and SEM and then quantified using image process software. The hardness distribution of the joint after creep was measured. The results show that the weakest area is the fine grain heat-affected zone (FGHAZ) of T92 side in the DSWJ, and the fracture mode is type IV cracking. No creep void damage was found in the Ni-based weld metal and HR3C side of the joint. The creep damage process in the T92-side FGHAZ of DSWJs can be divided into three stages. In the initial creep stage (< 40%tf, tf is the fracture life), the number of cavities was very small. In the middle period of creep (60%tf − 80%tf), creep damage accumulated rapidly, the number of cavities increased sharply, and a few microcracks appeared. In the late stage of creep (>80%tf), a large number of microcracks formed and expanded to form macrocracks. The hardness of T92 side FGHAZ is the lowest in the DSWJ, the creep properties deteriorate seriously, and the second phase particles, especially the Laves phase precipitate and grow up, all of which promote the formation of creep cavity damage and eventually type IV fracture occurs.
  • 宋有明, 陈国宏, 余新海, 等. T92/HR3C异种钢焊接接头高温拉伸变形及断裂行为[J]. 材料热处理学报, 2012, 33(2): 72 − 78.

    Song Youming, Chen Guohong, Yu Xinhai, et al. Tensile plastic deformation and fracture behavior of T92/HR3C dissimilar welded joints at high temperatures[J]. Transactions of Materials and Heat Treatment, 2012, 33(2): 72 − 78.
    王学, 潘乾刚, 刘洪, 等. 超超临界机组用P92钢焊接细晶区高温蠕变行为研究[J]. 中国电机工程学报, 2010, 30(2): 104 − 108.

    Wang Xue, Pan Qiangang, Liu Hong, et al. High-temperature creep behaviour of fine grained heat-affected zone in P92 weldment used in ultra supercritical units[J]. Proceedings of the Chinese Society of Electrical Engineering, 2010, 30(2): 104 − 108.
    Kimura K, Sawada K, Kushima H, et al. Effect of stress on the creep deformation of ASME Grade P92/T92 steels[J]. International Journal of Materials Research, 2008, 99(4): 395 − 401. doi: 10.3139/146.101651
    Wang Xiao, Wang Xue, Niu Xiaoguang, et al. Application of nonlinear ultrasonic technique to characterize the creep damage in ASME T92 steel welded joints[J]. NDT & E International, 2018, 98: 8 − 16.
    李新梅, 张忠文, 杜宝帅, 等. HR3C/T92异种钢焊接接头650 ℃时效后的组织和韧性[J]. 金属热处理, 2013, 38(2): 74 − 77.

    Li Xinmei, Zhang Zhongwen, Du Baoshuai, et al. Microstructure and toughness of HR3C/T92 dissimilar steel weld joint aged at 650 ℃[J]. Heat Treatment of Metals, 2013, 38(2): 74 − 77.
    刘俊建, 陈国宏, 余新海, 等. T92/HR3C异种钢焊接接头的组织结构和力学性能[J]. 材料热处理学报, 2011, 32(2): 54 − 60.

    Liu Junjian, Chen Guohong, Yu Xinhai, et al. Microstructure and mechanical properties of T92/HR3C dissimilar steel welding joints[J]. Transactions of Materials and Heat Treatment, 2011, 32(2): 54 − 60.
    Wang Xue, Pan Qiangang, Tao Yongshun, et al. Type IV creep rupture characteristics of P92 steel weldment[J]. Acta Metallurgica Sinica, 2012, 48(5): 427 − 434.
    Francis J A, Bhadeshia H K D H, Mazur W. Review type IV cracking in ferritic power plant steels[J]. Materials Science and Technology, 2006, 22(12): 1387 − 1395. doi: 10.1179/174328406X148778
    李新梅, 张忠文, 杜宝帅, 等. 高温服役5万h后HR3C钢的显微组织和力学性能[J]. 机械工程材料, 2019, 43(8): 51 − 54. doi: 10.11973/jxgccl201908010

    Li Xinmei, Zhang Zhongwen, Du Baoshuai, et al. Microstructure and mechanical properties of HR3C steel after service at high temperature for 50 000 h[J]. Materials for Mechanical Engineering, 2019, 43(8): 51 − 54. doi: 10.11973/jxgccl201908010
    Zieliński A, Golański G, Sroka M. Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30 000 h at 650-750 ℃[J]. Materials Science & Engineering A, 2020, 796: 139944.
    Hu Zhengfei, Zhang Zhen. Investigation the effect of precipitating characteristics on the creep behavior of HR3C austenitic steel at 650 ℃[J]. Materials Science & Engineering A, 2019, 742: 451 − 463.
    许乐, 温建锋, 涂善东. P92钢焊接接头蠕变损伤与裂纹扩展数值模拟[J]. 焊接学报, 2019, 40(8): 80 − 88.

    Xu Le, Wen Jianfeng, Tu Shandong. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. Transactions of the China Welding Institution, 2019, 40(8): 80 − 88.
    Wang Xue, Wang Xiao, Li Huijun, et al. Laves phase precipitation behavior in the simulated fine-grained heat-affected zone of creep strength enhanced ferritic steel P92 and its role in creep void nucleation and growth[J]. Welding in the World, 2017, 61(2): 231 − 239. doi: 10.1007/s40194-017-0424-2
    Tezuka H, Sakurai T. A trigger of type IV damage and a new heat treatment procedure to suppress it. Microstructural investigations of long-term ex-service Cr-Mo steel pipe elbows[J]. International Journal of Pressure Vessels and Piping, 2005, 82: 165 − 174. doi: 10.1016/j.ijpvp.2004.09.001
    张建龙, 薛河, 鲁元. Super304H/T92奥氏体耐热钢摩擦焊焊接接头持久强度及断裂行为[J]. 材料导报, 2019, 33(12): 2067 − 2070. doi: 10.11896/cldb.18050006

    Zhang Jianlong, Xue He, Lu Yuan. Study on creep rupture strength and fracture behavior of Super304H/T92 austenitic heat-resistant steel friction welding joints[J]. Materials Review, 2019, 33(12): 2067 − 2070. doi: 10.11896/cldb.18050006
    Guan Yue, Shan Tie, Cong Cao, et al. The precipitation behavior and mechanical properties of long term serviced HR3C/T92 dissimilar joint[J]. Key Engineering Materials, 2019, 4784(1590): 86 − 92.
    Zhao Dandan, Li Shilei, Wang Yanli, et al. Investigation of ion irradiation hardening behaviors of tempered and long-term thermal aged T92 steel[J]. Journal of Nuclear Materials, 2018, 511: 191 − 199. doi: 10.1016/j.jnucmat.2018.09.016
    Liang Zhiyuan, Zhao Qinxin, Deng Jianguo, et al. Influence of Aging treatment on the microstructure and mechanical properties of T92/Super 304H dissimilar metal welds[J]. Materials at High Temperatures, 2018, 35(4): 327 − 334. doi: 10.1080/09603409.2017.1334857
    Sung H J, Moon J H, Jang M J, et al. Microstructural and finite element analysis of creep failure in dissimilar weldment between 9Cr and 2.25Cr heat-resistant steels[J]. Metallurgical and Materials Transactions A, 2018, 49(11): 5323 − 5332. doi: 10.1007/s11661-018-4859-x
    李林平, 梁军, 赵雷, 等. 焊后热处理温度对G115/T92异种钢接头组织及力学性能的影响[J]. 金属热处理, 2019, 44(2): 68 − 72.

    Li Linping, Liang Jun, Zhao Lei, et al. Effect of PWHT temperature on microstructure and mechanical properties of G115/T92 dissimilar steel welded joint[J]. Heat Treatment of Metals, 2019, 44(2): 68 − 72.
  • Related Articles

    [1]ZHANG Dong1,2, CHEN Maoai1, WU Chuansong1. Optimization of waveform parameters for high speed CMT welding of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 118-122. DOI: 10.12073/j.hjxb.2018390027
    [2]WU Xiangyang, ZHANG Zhiyi, QI Weichuang, TIAN Renyong, SHI Chunyuan. Optimization of narrow groove plasma-MAG hybrid welding process parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 116-119. DOI: 10.12073/j.hjxb.20170526
    [3]HUANG Pengfei, XIONG Wei, YAN Hengyu, LU Zhenyang. GMAW parameter optimization for lap joints of dissimilar AHSS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 1-4.
    [4]LU Zhenyang, TANG Chao, XIONG Wei, HUANG Pengfei. Parameter optimization for MAG of DP780[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 9-12.
    [5]WANG Hongxiao, SHI Chunyuan, WANG Chunsheng, WANG Ting. Optimization of laser welding parameters of stainless steel vehicle body based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 69-72.
    [6]SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108.
    [7]ZHANG Jianjun, LI Wushen, DI Xinjie, WU Qiang. Prediction of performance of heat affected zone and optimization on welding parameters of 07MnNiCrMoVDR steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 29-32.
    [8]LIU Xue-mei, YAO Jun-shan, ZHANG Yan-hua. Optimization for friction surfacing parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 99-102.
    [9]ZHANC Ben-sheng, ZHOU Hong, YU Yong-li. Optimizing Parameters or A New Sprying Material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 58-60.
    [10]Gang Tie, Takayoshi OHJI. On-line idcntification of mathematical model parameters and selection of optimized welding parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (4): 225-230.

Catalog

    Article views (451) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return