Advanced Search
TIAN Chaobo, YANG Xinqi, LI Shengli, TANG Wenshen, LI Huijun. High temperature creep behavior of friction stir welding joints for CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 38-45. DOI: 10.12073/j.hjxb.20200811003
Citation: TIAN Chaobo, YANG Xinqi, LI Shengli, TANG Wenshen, LI Huijun. High temperature creep behavior of friction stir welding joints for CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 38-45. DOI: 10.12073/j.hjxb.20200811003

High temperature creep behavior of friction stir welding joints for CLAM steel

More Information
  • Received Date: August 10, 2020
  • Available Online: April 06, 2021
  • The uniaxial creep tensile strength, fracture features and microstructures of friction stir welded joint with postweld heat treatment for CLAM steel have been investigated in the range of the creep applied stress from 180 MPa to 300 MPa at 823 K condition. It is found that the creep life of the FSW joints of CLAM steel increase from 1.5 h, 19.2 h and 883 h to above 6769 h respectively, when the creep stresses decrease from 300 MPa, 260 MPa and 220 MPa to 180 MPa. The inter critical heat affected zone is the weakest zone of creep rupture resistance for the FSW joint of CLAM steel, the joints mainly exhibit dislocation-controlled creep deformation mechanism and the transgranular ductile fracture mode. The microstructures of inter critical heat affected zone produce recovery and subgrain boundaries are formed in here during creep process, which result in the decrease of dislocation strengthening action; the coarser M23C6 carbides is produced or the coarser Laves phase around the M23C6 carbides is formed, which result in the reduction of precipitation and solution strengthening action, these issues are the main reasons for the deterioration of the creep performance of FSW joints. The creep fracture strength of FSW joint is estimated to be 156 MPa in the condition of 1 × 105 h creep life according to the Monkman-Grant equation, which reaches 88 % of the strength of base metal.
  • 黄群英, 李春京, 刘少军, 等. 中国实验包层模块材料研发进展[J]. 核科学与工程, 2009, 29(3): 260 − 265. doi: 10.3321/j.issn:0258-0918.2009.03.011

    Huang Qunying, Li Chunjing, Liu Shaojun, et al. R & D status of materials for test blanket modules in China[J]. Nuclear Science and Engineering, 2009, 29(3): 260 − 265. doi: 10.3321/j.issn:0258-0918.2009.03.011
    Tan L, Katoh Y, Tavassoli A A F, et al. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service[J]. Journal of Nuclear Materials, 2016, 479: 515 − 523. doi: 10.1016/j.jnucmat.2016.07.054
    Sklenicka V, Kucharova K, Svoboda M, et al. Long-term creep behavior of 9%-12% Cr power plant steels[J]. Master Character, 2003, 51: 35 − 37. doi: 10.1016/j.matchar.2003.09.012
    姜志忠, 黄继华, 胡杰, 等. 聚变堆用CLAM钢激光焊接接头显微组织及性能[J]. 焊接学报, 2012, 33(2): 5 − 8.

    Jiang Zhizhong, Huang Jihua, Hu Jie, et al. Microstructure and mechanical properties of laser welded joints of CLAM steel used for fusion reactor[J]. Transactions of the China Welding Institution, 2012, 33(2): 5 − 8.
    Aubert P, Tavassoli F, Rieth M, et al. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO[J]. Journal of Nuclear Materials, 2011, 417(1−3): 43 − 50. doi: 10.1016/j.jnucmat.2010.12.248
    Das C R, Albert S K, Sam S, et al. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process[J]. Fusion Engineering & Design, 2014, 89(11): 2672 − 2678.
    许乐, 温建锋, 涂善东. P92钢焊接接头蠕变损伤与裂纹扩展数值模拟[J]. 焊接学报, 2019, 40(8): 80 − 88.

    Xu Le, Wen Jianfeng, Tu Shandong. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. Transactions of the China Welding Institution, 2019, 40(8): 80 − 88.
    Albert S K, Tabuchi M, Hongo H, et al. Effect of welding process and groove angle on type IV cracking behavior of weld joints of a ferritic steel[J]. Science & Technology of Welding & Joining, 2013, 10(2): 149 − 157.
    Wang J, Lu S, Dong W, et al. Microstructural evolution and mechanical properties of heat affected zones for 9Cr2WVTa steels with different carbon contents[J]. Materials & Design, 2014, 64(12): 550 − 558.
    Noh S, Ando M, Tanigawa H, et al. Friction stir welding of F82H steel for fusion applications[J]. Journal of Nuclear Materials, 2016, 478: 1 − 6. doi: 10.1016/j.jnucmat.2016.05.028
    Manugula V L, Rajulapati K V, Reddy G M, et al. A critical assessment of the microstructure and mechanical properties of friction stir welded reduced activation ferritic–martensitic steel[J]. Materials & Design, 2016, 92: 200 − 212.
    Zhang C, Cui L, Wang D, et al. The heterogeneous microstructure of heat affect zone and its effect on creep resistance for friction stir joints on 9Cr–1.5 W heat resistant steel[J]. Scripta Materialia, 2019, 158: 6 − 10. doi: 10.1016/j.scriptamat.2018.08.028
    雷玉成, 张鑫, 陈玲, 等. 中国低活化马氏体钢TIG焊焊接接头的高温蠕变性能分析[J]. 焊接学报, 2016, 37(3): 5 − 8.

    Lei Yucheng, Zhang Xin, Chen Ling, et al. Analysis on creep properties of TIG welding joints of China low activation martensitic steel[J]. Transactions of the China Welding Institution, 2016, 37(3): 5 − 8.
    Norton F H. The creep of steel at high temperatures[M]. McGraw-Hill Book Company, Incorporated, 1929.
    Betten J. Creep mechanics[M]. Springer Science & Business Media, 2008.
    Deng K K, Li J C, Xu F J, et al. Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite[J]. Materials & Design, 2015, 67(2): 72 − 81.
    Lee J S, Armaki H G, Maruyama K, et al. Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel[J]. Materials Science and Engineering: A, 2006, 428(1/2): 270-275.
    叶有俊, 王一宁, 姜勇, 等. 基于碳化物相分析法的 P92 钢寿命无损评价[J]. 压力容器, 2020, 37(8): 1 − 5, 23.

    Ye Youjun, Wang Yining, Jiang Yong, et al. Nondestructive life assessment based on carbide phase analysis of P92 steel[J]. Pressure Vessel Technology, 2020, 37(8): 1 − 5, 23.
    Zhang X, Lei Y, Chen L, et al. Study on creep properties for TIG welded joints of CLAM steel[J]. Journal of Fusion Energy, 2016, 35(2): 299 − 304. doi: 10.1007/s10894-015-0024-3
  • Related Articles

    [1]ZHANG Dong1,2, CHEN Maoai1, WU Chuansong1. Optimization of waveform parameters for high speed CMT welding of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 118-122. DOI: 10.12073/j.hjxb.2018390027
    [2]WU Xiangyang, ZHANG Zhiyi, QI Weichuang, TIAN Renyong, SHI Chunyuan. Optimization of narrow groove plasma-MAG hybrid welding process parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 116-119. DOI: 10.12073/j.hjxb.20170526
    [3]HUANG Pengfei, XIONG Wei, YAN Hengyu, LU Zhenyang. GMAW parameter optimization for lap joints of dissimilar AHSS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 1-4.
    [4]LU Zhenyang, TANG Chao, XIONG Wei, HUANG Pengfei. Parameter optimization for MAG of DP780[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 9-12.
    [5]WANG Hongxiao, SHI Chunyuan, WANG Chunsheng, WANG Ting. Optimization of laser welding parameters of stainless steel vehicle body based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 69-72.
    [6]SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108.
    [7]ZHANG Jianjun, LI Wushen, DI Xinjie, WU Qiang. Prediction of performance of heat affected zone and optimization on welding parameters of 07MnNiCrMoVDR steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 29-32.
    [8]LIU Xue-mei, YAO Jun-shan, ZHANG Yan-hua. Optimization for friction surfacing parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 99-102.
    [9]ZHANC Ben-sheng, ZHOU Hong, YU Yong-li. Optimizing Parameters or A New Sprying Material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 58-60.
    [10]Gang Tie, Takayoshi OHJI. On-line idcntification of mathematical model parameters and selection of optimized welding parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (4): 225-230.

Catalog

    Article views (511) PDF downloads (54) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return