Citation: | ZHANG Liangliang, WANG Xijing, WEI Xueling, LIU Xiao, CHAI Tingxi. Effect of rotation speed on texture type in friction stir welding joint for 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 128-132. DOI: 10.12073/j.hjxb.2019400085 |
Threadgill P L. Terminology in friction stir welding[J]. Science & Technology of Welding & Joining, 2007, 12(4): 357 − 360.
|
Dong Xuewei, Li Xiangfeng, Zou Dunwen, et al. Numerical simulation welding of temperature field in the process for 7022 aluminum full friction stir alloy[J]. Materials for Mechanical Engineering, 2012, 36(10): 92 − 96
|
Wang Xijing, Han Xiaohui, Li Changfeng, et al. Horizontal flow status ofplasticmetal in differentdepth during friction stir welding for thick alum inum alloy[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(2): 198 − 204
|
Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium[J]. Acta Materialia, 2003, 51(3): 713 − 729.
|
Topic I, Höppel H W, Göken M. Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016[J]. Materials Science & Engineering A, 2009, 503(1): 163 − 166.
|
Yuan Gecheng, Liang Chunlang, Liu Hong, et al. Crystal orientation in nugget zone of friction stir welded 5083 aluminum alloy plates[J]. Tansactions of the China Welding Instiution, 2014, 35(8): 79 − 82
|
Zhang Hongwu, Zhang Zhao, Chen Jintao. Effect of angular velocity of the pin on materal folw during friction stir welding[J]. Acta Metallurgica Sinica, 2005, 41(8): 853 − 859
|
董学伟, 黎向锋, 左敦稳, 等. 7022铝合金搅拌摩擦焊接全过程温度场的数值模拟[J]. 机械工程材料, 2012, 36(10): 92 − 96
|
王希靖, 韩晓辉, 李常锋, 等. 厚铝合金板搅拌摩擦焊塑性金属不同深度的水平流动状况[J]. 中国有色金属学报, 2005, 15(2): 198 − 204
|
Wang Xijing, Han Xiaohui, Guo Ruijie, et al. Numberical simulation of temperature field in friction stir welding[J]. Tansactions of the China Welding Instiution, 2005, 26(12): 17 − 20
|
Xu W F, Liu J H, Chen D L. Material flow and core/multi-shell structures in a friction stir welded aluminum alloy with embedded copper markers[J]. Journal of Alloys & Compounds, 2011, 509(33): 8449 − 8454.
|
Zhang Chengcong, Chang Baohua, Tao Jun, et al. Microstructure evolution during friction stir welding of 2024 aluminum alloy[J]. Tansactions of the China Welding Instiution, 2013, 34(3): 57 − 60
|
Suhuddin U F H R, Mironov S, Sato Y S, et al. Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets[J]. Materials Science & Engineering A, 2010, 527(7-8): 1962 − 1969.
|
袁鸽成, 梁春朗, 刘 洪, 等. 搅拌摩擦焊焊接5083铝合金板材焊核区的晶体取向[J]. 焊接学报, 2014, 35(8): 79 − 82
|
张洪武, 张 昭, 陈金涛. 搅拌摩擦焊接过程中搅拌头转速对材料流动的影响[J]. 金属学报, 2005, 41(8): 853 − 859
|
王希靖, 韩晓辉, 郭瑞杰, 等. 搅拌摩擦焊接过程温度场数值模拟[J]. 焊接学报, 2005, 26(12): 17 − 20
|
张成聪, 常保华, 陶 军, 等. 2024铝合金搅拌摩擦焊过程组织演化分析[J]. 焊接学报, 2013, 34(3): 57 − 60
|
Sato Y S, Kokawa H, Ikeda K, et al. Microtexture in the friction-stir weld of an aluminum alloy[J]. Metallurgical and Materials Transactions A, 2001, 32(4): 941 − 948.
|
胡庚祥, 蔡 珣, 戎咏华. 材料科学基础[M], 上海: 上海交通大学出版社, 2000.
|
Jeon J, Mironov S, Sato Y S, et al. Anisotropy of structural response of single crystal austenitic stainless steel to friction stir welding[J]. Acta Materialia, 2013, 61(9): 3465 − 3472.
|
张信钰. 金属和合金的织构[M], 北京: 科学出版社, 1976.
|