Processing math: 100%
Advanced Search
ZHANG Liangliang, WANG Xijing, WEI Xueling, LIU Xiao, CHAI Tingxi. Effect of rotation speed on texture type in friction stir welding joint for 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 128-132. DOI: 10.12073/j.hjxb.2019400085
Citation: ZHANG Liangliang, WANG Xijing, WEI Xueling, LIU Xiao, CHAI Tingxi. Effect of rotation speed on texture type in friction stir welding joint for 6082-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 128-132. DOI: 10.12073/j.hjxb.2019400085

Effect of rotation speed on texture type in friction stir welding joint for 6082-T6 aluminum alloy

More Information
  • Received Date: November 29, 2018
  • The evolutions of grain morphology, grain boundary features and texture components on the upper surface of friction stir welding nugget for 6082-T6 aluminum alloy at different rotation speeds of tool were studied by electron backscatter diffraction technology combined with orientation analysis software. The results indicated that the (110) [001] Goss texture and (114)[22ˉ1] texture were formed in the nugget zone under the shear stress introduced by the pin, and the upsetting pressure of the shoulder made it rotate to certain angle along the transverse direction, leading to the formation of (112)[11ˉ1] copper texture. With elevating the rotation speed of tool, the rotation angle of grains along the transverse direction increased, resulting in the further formation of (100) [011] shear texture and (11ˉ1)[112] texture. [110] fiber texture was formed by extrusion of grain in nugget zone by pin. When the rotation speed of tool was elevated from 1 200 to 2 000 r/min, the extrusion degree was increased, which resulted in a significant increase in the components of [110] fiber texture.
  • Threadgill P L. Terminology in friction stir welding[J]. Science & Technology of Welding & Joining, 2007, 12(4): 357 − 360.
    Dong Xuewei, Li Xiangfeng, Zou Dunwen, et al. Numerical simulation welding of temperature field in the process for 7022 aluminum full friction stir alloy[J]. Materials for Mechanical Engineering, 2012, 36(10): 92 − 96
    Wang Xijing, Han Xiaohui, Li Changfeng, et al. Horizontal flow status ofplasticmetal in differentdepth during friction stir welding for thick alum inum alloy[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(2): 198 − 204
    Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium[J]. Acta Materialia, 2003, 51(3): 713 − 729.
    Topic I, Höppel H W, Göken M. Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016[J]. Materials Science & Engineering A, 2009, 503(1): 163 − 166.
    Yuan Gecheng, Liang Chunlang, Liu Hong, et al. Crystal orientation in nugget zone of friction stir welded 5083 aluminum alloy plates[J]. Tansactions of the China Welding Instiution, 2014, 35(8): 79 − 82
    Zhang Hongwu, Zhang Zhao, Chen Jintao. Effect of angular velocity of the pin on materal folw during friction stir welding[J]. Acta Metallurgica Sinica, 2005, 41(8): 853 − 859
    董学伟, 黎向锋, 左敦稳, 等. 7022铝合金搅拌摩擦焊接全过程温度场的数值模拟[J]. 机械工程材料, 2012, 36(10): 92 − 96
    王希靖, 韩晓辉, 李常锋, 等. 厚铝合金板搅拌摩擦焊塑性金属不同深度的水平流动状况[J]. 中国有色金属学报, 2005, 15(2): 198 − 204
    Wang Xijing, Han Xiaohui, Guo Ruijie, et al. Numberical simulation of temperature field in friction stir welding[J]. Tansactions of the China Welding Instiution, 2005, 26(12): 17 − 20
    Xu W F, Liu J H, Chen D L. Material flow and core/multi-shell structures in a friction stir welded aluminum alloy with embedded copper markers[J]. Journal of Alloys & Compounds, 2011, 509(33): 8449 − 8454.
    Zhang Chengcong, Chang Baohua, Tao Jun, et al. Microstructure evolution during friction stir welding of 2024 aluminum alloy[J]. Tansactions of the China Welding Instiution, 2013, 34(3): 57 − 60
    Suhuddin U F H R, Mironov S, Sato Y S, et al. Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets[J]. Materials Science & Engineering A, 2010, 527(7-8): 1962 − 1969.
    袁鸽成, 梁春朗, 刘 洪, 等. 搅拌摩擦焊焊接5083铝合金板材焊核区的晶体取向[J]. 焊接学报, 2014, 35(8): 79 − 82
    张洪武, 张 昭, 陈金涛. 搅拌摩擦焊接过程中搅拌头转速对材料流动的影响[J]. 金属学报, 2005, 41(8): 853 − 859
    王希靖, 韩晓辉, 郭瑞杰, 等. 搅拌摩擦焊接过程温度场数值模拟[J]. 焊接学报, 2005, 26(12): 17 − 20
    张成聪, 常保华, 陶 军, 等. 2024铝合金搅拌摩擦焊过程组织演化分析[J]. 焊接学报, 2013, 34(3): 57 − 60
    Sato Y S, Kokawa H, Ikeda K, et al. Microtexture in the friction-stir weld of an aluminum alloy[J]. Metallurgical and Materials Transactions A, 2001, 32(4): 941 − 948.
    胡庚祥, 蔡 珣, 戎咏华. 材料科学基础[M], 上海: 上海交通大学出版社, 2000.
    Jeon J, Mironov S, Sato Y S, et al. Anisotropy of structural response of single crystal austenitic stainless steel to friction stir welding[J]. Acta Materialia, 2013, 61(9): 3465 − 3472.
    张信钰. 金属和合金的织构[M], 北京: 科学出版社, 1976.
  • Related Articles

    [1]LI Jihong, ZHANG Yunlong, DU Mingke, ZHANG Min, LI Jing, LEI Longyu. Effect of alloy elements on the interface connection mechanism and properties of copper/ steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 34-41. DOI: 10.12073/j.hjxb.20201102001
    [2]ZHENG Shaoxian, LI Yenan, SHI Wei, ZHAO Xilong. Microstructures and mechanical properties of welding joint of Q235/1Cr18Ni9Ti dissimilar steel with ultra-narrow-gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 38-43. DOI: 10.12073/j.hjxb.2019400206
    [3]HE Diqiu, MA Li, SUN Youqing, LAI Ruilin. Microstructures and properties of friction stir welds of C18000 copper alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 55-60. DOI: 10.12073/j.hjxb.2019400100
    [4]XUAN Jianwei, ZHU Dingyi, WANG Jiliang, PENG Xian, WANG Jianting, WANG Mingjie. Microstructure and mechanical properties of high-carbon bearing copper TWIP steels TIG welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 93-96.
    [5]CHEN Cheng, XUE Songbai, SUN Huhao, LIN Zhongqiang, LI Yang. Microstructure and mechanical properties of 5083 aluminum alloy joint by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 37-40.
    [6]XUE Zhiqing, HU Shengsun, ZUO Di, SHEN Junqi. Microstructural characteristics and mechanical properties of laser-welded copper and aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 51-54.
    [7]LEI Yucheng, ZHAO Kai, HUANG Wei, LIANG Shenyong. Effect of La2O3 on microstructure and mechanical properties of MGH956 alloy during TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 1-4.
    [8]LÜ Shixiong, CUI Qinglong, HUANG Yongxian, ZHENG Chuanqi, WANG Yang. Microstructure and mechanical properties of thick titanium alloy joint in narrow-gap TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 81-84.
    [9]LI Xiawei, ZHANG Datong, QIU Cheng, ZHANG Wen. Effect of processing parameters on microstructure and mechanical properties of pure copper joints made by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 93-96.
    [10]Sun Daqian, Zhou Zhenfeng, Ren Zhenan. Microstructure and Mechanical Properties of Austempered Ductile Iron Welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 202-207.
  • Cited by

    Periodical cited type(6)

    1. 戎万,操齐高,郑晶,汪小钰,贾志华,孟晗琪. 钯含量对银铜钯合金箔带钎料性能的影响. 广东化工. 2023(24): 41-43 .
    2. 杨洪刚,徐晓炯,韦祎,王训春. 镀银铜导线与可伐合金连接片单面电阻点焊工艺仿真与实验研究. 热加工工艺. 2020(05): 159-161 .
    3. 吴晓红. 电池连接片紫铜激光焊接工艺研究. 应用激光. 2020(01): 62-66 .
    4. 杨洪刚,赵欣. 镀银铜导线与银箔平行微隙电阻焊影响因素. 科学技术与工程. 2019(22): 110-114 .
    5. 江琛,贺晓斌,刘双宝,徐燕铭,皮刚. 镀银编织铜丝与铜层微电阻点焊接头组织与性能研究. 焊接. 2019(08): 50-52+67-68 .
    6. 毛锦荣,黄永德,付强,张成聪,何鹏. 含镍中间层铍青铜微电阻点焊接头形成机理. 焊接学报. 2017(08): 103-106+133 . 本站查看

    Other cited types(5)

Catalog

    Article views (149) PDF downloads (6) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return