Citation: | SUN Yang, LIU Yaliang, LI He, YANG Xinhua, XU Hongji. Rapid fatigue strength assessment of SUS301L-Q235B dissimilar materials spot-welded joint based on infrared thermography[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 61-66. DOI: 10.12073/j.hjxb.20190304001 |
朱国仁, 陈松, 李蒙蒙. SUS301L不锈钢非熔透型激光搭接焊缝的疲劳特性分析[J]. 焊接学报, 2016, 37(4): 14 − 19.
Zhu Guoren, Chen Song, Li Mengmeng. Study on fatigue performance of stainless steel non-penetration laser lap welding of SUS301L stainless body[J]. Transactions of the China Welding Institution, 2016, 37(4): 14 − 19.
|
王希靖, 邓向槟, 王磊. Q235钢板与6082铝合金搅拌摩擦焊工艺[J]. 焊接学报, 2016, 37(1): 99 − 103.
Wang Xijing, Deng Xiangbin, Wang Lei. Parametric study on friction stir welding of Q235 steel with 6082 aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(1): 99 − 103.
|
Liu Y L, Zou L, Sun Y B, et al. Evaluation model of aluminum alloy welded joint low-cycle fatigue data based on information entropy[J]. Entropy, 2017, 19(1): 1 − 14. doi: 10.3390/e19010037
|
刘亚良, 孙屹博, 邹丽, 等. 基于信息熵的铝合金焊接接头疲劳寿命分析方法[J]. 焊接学报, 2018, 39(4): 67 − 72.
Liu Yaliang, Sun Yibo, Zou Li, et al. Fatigue life analysis method of aluminum alloy welded joints based on information entropy[J]. Transactions of the China Welding Institution, 2018, 39(4): 67 − 72.
|
封硕. 基于热力学分析的疲劳损伤与寿命预测研究[D]. 西安: 西北工业大学, 2015.
|
Rosa G L, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International journal of Fatigue, 2000, 22(1): 65 − 73. doi: 10.1016/S0142-1123(99)00088-2
|
Luong M P. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials, 1998, 28(1-4): 155 − 163. doi: 10.1016/S0167-6636(97)00047-1
|
Crupi V, Guglielmino E, Maestro M, et al. Fatigue analysis of butt welded AH36 steel joints: thermographic method and design S-N curve[J]. Marine Structures, 2009, 22(3): 373 − 386. doi: 10.1016/j.marstruc.2009.03.001
|
Zhang H X, Wu G H, Yan Z F, et al. An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography[J]. Materials and Design, 2014, 55: 785 − 791. doi: 10.1016/j.matdes.2013.10.036
|
Peyroux R, Chrysochoos A, Licht C, et al. Thermomechanical couplings and pseudoelasticity of shape memory alloys[J]. International Journal of Engineering Science, 1998, 36(4): 489 − 509. doi: 10.1016/S0020-7225(97)00052-9
|
Wagner D, Ranc N, Bathias C, et al. Fatigue crack initiation detection by an infrared thermography method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(1): 12 − 21.
|
Yang H W, Cui Z Q, Wang W X, et al. Fatigue behavior of AZ31B magnesium alloy electron beam welded joint based on infrared thermography[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(10): 2595 − 2602. doi: 10.1016/S1003-6326(16)64385-6
|
[1] | HAN Mei, ZHANG Xi, MA Qingjun, WEI Yushun, WEI Chen, WANG Zejun, JIA Yunhai. The effect of trace elements on the microstructure and properties of coarse grain heat affected zone of EH36 ship steel with super large heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 47-53. DOI: 10.12073/j.hjxb.20230301001 |
[2] | CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003 |
[3] | SU Xiaohu, LI Zhuoxin, LI Hong, JinKim Hee, MENG Bo. Microstructure to properties of coarse grained heat affected zone in deposited weld metal of metal cored wire E120C-K4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 48-53. DOI: 10.12073/j.hjxb.2019400262 |
[4] | ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106. |
[5] | HU Meijuan, WANG Peng, HAN Xinli, JI Lingkang. Microstructure and properties of coarse grain region for high-strain pipeline X80 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 93-96. |
[6] | CHAI Feng, SU Hang, YANG Caifu, LUO Xiaobing. Coarse grained region microstructure and properties of high heat input welding DH36 steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 25-28. |
[7] | ZHANG Yingqiao, ZHANG Hanqian, LIU Weiming. Effects of M-A constituent on toughness of coarse grain heat-affected zone in HSLA steels for oil tanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 109-112. |
[8] | WU Wei, GAO Hongming, WU Lin. Microstructures in CGHAZ and mechanical properties of welded joint during welding of fine grain titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 61-64. |
[9] | CHAI Feng, YANG Cai-fu, ZHANG Yong-quan, SU Hang, XU Zhou. Coarse-grained heat affected zone microstructure and toughness of copper-bearing age-hardening steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 56-60. |
[10] | Wu Zhantian, Guo Jiuzhu, Zhou Zhenhua, Zhu Hong, Wang Xiaoyu. Structure and property of coarse-grained zone in weld of a high strength low alloy 20Mn2WNbB steel studied by thermal simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (1): 40-44. |
1. |
马晓锋,夏攀,刘海生,史铁林,王中任. 全位置焊接熔池的深度学习检测方法. 机械工程学报. 2023(12): 272-283 .
![]() |