Advanced Search
WEI Wei, SUN Yang, ZHAO Xingming, CHEN Minghua, ZOU Li, YANG Xinhua. A rapid fatigue life prediction model of butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 91-97. DOI: 10.12073/j.hjxb.20220929005
Citation: WEI Wei, SUN Yang, ZHAO Xingming, CHEN Minghua, ZOU Li, YANG Xinhua. A rapid fatigue life prediction model of butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 91-97. DOI: 10.12073/j.hjxb.20220929005

A rapid fatigue life prediction model of butt joints based on energy dissipation

More Information
  • Received Date: September 28, 2022
  • Available Online: July 18, 2023
  • An energy dissipation model for high cycle fatigue linked to anelastic and inelastic behavior of butt joints is developed by introducing α and β variables of the internal state variable (ISV) constitutive model. The crucial stress amplitudes, σc0 and σc1 (fatigue limit), corresponding to the onset of recoverable anelastic and unrecoverable inelastic behavior, are defined as two characteristic stress amplitudes. The energy dissipation response of butt joints under different stress amplitudes is examined using this energy dissipation model. The results demonstrate that when stress levels are close to the fatigue limit, the energy dissipation exhibits a transition from a linear response to a nonlinear response. On this basis, considering that when the stress amplitude is above the fatigue limit, there is a critical value for the energy dissipation during the fatigue duration, a fatigue life prediction model based on damage accumulation is developed in combination with the damage-related inelastic dissipation, thereby reaching a rapid fatigue life prediction. The results show that the median S-N curve fitted by the predicted data and the test data is in good agreement, and this validates that the proposed model can be utilized to realize a rapid and accurate prediction of the fatigue life of butt joints.
  • 郭丽娟, 田慧, 李洋, 等. 大角度激光填丝双面焊碳钢车体T形接头工艺及性能研究[J]. 焊接, 2017(12): 56 − 60.

    Guo Lijuan, Tian Hui, Li Yang, et al. Investigation on technology and performance of T joint of carbon steel welded by large tilt angle laser welding with filler wire from double sides[J]. Welding & Joining, 2017(12): 56 − 60.
    李洋, 郭丽娟, 刘东军, 等. 激光填丝焊碳钢车体不等厚对接接头疲劳性能[J]. 电焊机, 2018, 48(5): 31 − 33.

    Li Yang, Guo Lijuan, Liu Dongjun, et al. Fatigue properties of different thickness butt joints of carbon steel body with laser fillet welding[J]. Electric Welding Machine, 2018, 48(5): 31 − 33.
    格尔内(英). 焊接结构的疲劳[M]. 周殿群, 译. 北京: 机械工业出版社, 1988.

    Gurney T. Fatigue of welded structure[M]. Cambridge: Cambridge University Press, 1979.
    郭广平, 丁传富. 航空材料力学性能检测[M]. 北京: 机械工业出版社, 2017.

    Guo Guangping, Ding Chuanfu. Mechanical testing of aeronautical materials[M]. Beijing: Mechanical Industry Press, 2017.
    Wei W, Li C, Sun Y, et al. Investigation of the self-heating of Q460 butt joints and an S-N curve modeling method based on infrared thermographic data for high-cycle fatigue[J]. Metals, 2021, 11(2): 232. doi: 10.3390/met11020232
    魏巍, 孙屹博, 杨光, 等. 基于能量耗散的Q460焊接接头疲劳强度评估[J]. 焊接学报, 2021, 42(4): 49 − 55.

    Wei Wei, Sun Yibo, Yang Guang, et al. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2021, 42(4): 49 − 55.
    Huang J, Garnier C, Pastor M, et al. Investigation of self-heating and life prediction in CFRP laminates under cyclic shear loading condition based on the infrared thermographic data[J]. Engineering Fracture Mechanics, 2020, 229: 106971. doi: 10.1016/j.engfracmech.2020.106971
    Jia X, Zhu P, Guan K, et al. Fatigue evaluation method based on fracture fatigue entropy and its application on spot welded joints[J]. Engineering Fracture Mechanics, 2022, 275: 108820.
    孙杨, 刘亚良, 李赫, 等. 基于红外热像法的SUS301L-Q235B异种材料点焊接头疲劳强度快速评定[J]. 焊接学报, 2020, 41(1): 61 − 66.

    Sun Yang, Liu Yaliang, Li He, et al. Rapid fatigue limit prediction of SUS301L-Q235B dissimilar materials spot-welded joint based on infrared thermography[J]. Transactions of the China Welding Institution, 2020, 41(1): 61 − 66.
    Chao J, Weimin L, Jian F, et al. Thermal fatigue behavior of copper/stainless steel explosive welding joint[J]. China Welding, 2021, 30(4): 25 − 29.
    Zhang L, Liu X, Wu S, et al. Rapid determination of fatigue life based on temperature evolution[J]. International Journal of Fatigue, 2013, 54(9): 1 − 6.
    郭杏林, 王晓钢. 疲劳热像法研究综述[J]. 力学进展, 2009, 39(2): 217 − 227.

    Guo Xingling, Wang Xiaogang. Overview on the thermographic method for fatigue research[J]. Advances In Mechanics, 2009, 39(2): 217 − 227.
    Fan J, Zhao Y, Guo X. A unifying energy approach for high cycle fatigue behavior evaluation[J]. Mechanics of Materials, 2018, 120(5): 15 − 25.
    樊俊铃. 基于能量耗散的Q235钢高周疲劳性能评估[J]. 机械工程学报, 2018, 54(6): 1 − 9. doi: 10.3901/JME.2018.06.001

    Fan Junling. High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J]. Journal of Mechanical Engineering, 2018, 54(6): 1 − 9. doi: 10.3901/JME.2018.06.001
    Teng Z, Wu H, Boller C, et al. A unified fatigue life calculation based on intrinsic thermal dissipation and microplasticity evolution[J]. International Journal of Fatigue, 2020, 131: 105370. doi: 10.1016/j.ijfatigue.2019.105370
    Yang W, Guo Q, Fan J, et al. Effect of aging temperature on energy dissipation and high-cycle fatigue properties of FV520B stainless steel[J]. Engineering Fracture Mechanics, 2021, 242: 107464. doi: 10.1016/j.engfracmech.2020.107464
    Yang W, Guo X, Guo Q, et al. Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology[J]. International Journal of Fatigue, 2019, 124: 461 − 472. doi: 10.1016/j.ijfatigue.2019.03.024
    Guo Q, Zaïri F, Yang W. Evaluation of intrinsic dissipation based on self-heating effect in high-cycle metal fatigue[J]. International Journal of Fatigue, 2020, 139: 105653. doi: 10.1016/j.ijfatigue.2020.105653
    Guo Q, Guo X. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation[J]. Materials & Design, 2016, 90: 248 − 255.
    Guo Q, Guo X, Fan J, et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation[J]. International Journal of Fatigue, 2015, 80: 136 − 144. doi: 10.1016/j.ijfatigue.2015.04.016
    Zhang H, Wu G, Yan Z, et al. An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography[J]. Materials and Design, 2014, 55: 785 − 791. doi: 10.1016/j.matdes.2013.10.036
    郭少飞, 刘雪松, 张红霞, 等. 基于能量耗散的AZ31B镁合金接头疲劳极限快速评估[J]. 焊接学报, 2020, 41(12): 38 − 43.

    Guo Shaofei, Liu Xuesong, Zhang Hongxia, et al. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2020, 41(12): 38 − 43.
    Liu Y, Sun Y, Sun Y, et al. Rapid fatigue life prediction for spot-welded joint of SUS301 L-DLT stainless steel and Q235B carbon steel based on energy dissipation[J]. Advances in Mechanical Engineering, 2018, 10(11): 1 − 11.
    Mark F, Douglas J. Historical review of internal state variable theory for inelasticity[J]. International Journal of Plasticity, 2010, 26(9): 1310 − 1334. doi: 10.1016/j.ijplas.2010.06.005
    Rice J R. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity[J]. Journal of the Mechanics and Physics of Solids, 1971, 19(6): 433 − 455. doi: 10.1016/0022-5096(71)90010-X
    Nourian-Avval A, Khonsari M. Rapid prediction of fatigue life based on thermodynamic entropy generation[J]. International Journal of Fatigue, 2021, 145: 106105. doi: 10.1016/j.ijfatigue.2020.106105
  • Related Articles

    [1]YUAN Mingqiang, ZHANG Chunbo, LIANG Wu, WU Yanquan, XIE Xingfei, ZHOU Jun, QU Jinglong. Analysis of microstructures and properties of GH4151 super alloy inertia fricrion welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 63-71. DOI: 10.12073/j.hjxb.20241010003
    [2]ZHANG Chunbo, LIANG Wu, ZHOU Jun, WU Yanquan, ZHANG Youzhao, LI Xiangwei. Effect of heat treatment on microstructure and microhardness of FGH96 inertia friction welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 57-62. DOI: 10.12073/j.hjxb.20230220002
    [3]DU Suigeng, ZHAO Xinzhe, LI Zhiyuan. Electric simulation inertia friction welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 8-14. DOI: 10.12073/j.hjxb.2019400255
    [4]ZHANG Chunbo, WU Yanquan, PIAO Dongguang, ZHOU Jun. Inertia friction welding procedure of TA19 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 44-48. DOI: 10.12073/j.hjxb.2018390295
    [5]QIN Guoliang, LIANG Yongliang, ZHOU Jun, QI Xiubin, ZHANG Chunbo. Effect of initial rotation speed of flywheel on inertia radial friction welded joint shape[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 19-22.
    [6]LI Jingyong, QIU Shuo, QIU Chenlong. Asymmetry of inertia friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 81-84.
    [7]WANG Feifan, LI Wenya, CHEN Liang, LI Jinglong. Numerical study on influence of axial pressure on inertia friction welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 41-44.
    [8]XU Hongji, YIN Lixiang, WEI Zhiyu, XIE Ming, ZHANG Tiancang. Microstructures and properties of Ti17 alloy inertia friction welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 89-92.
    [9]MENG Wei-ru, NIU Rui-feng, WANG Shi-yuan, LIU Xiao-fang, SONG Xi-ping. Analysis of temperature field in TC4 titanium alloy inertia friction welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 111-114.
    [10]YANG Jun, LOU Song-nian, YAN Jun-min, SHI Wei-qing. Grain Distribution Properties of Superalloy GH4169 Inertia Friction Welded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 33-35.

Catalog

    Article views (213) PDF downloads (57) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return