Advanced Search
ZHANG Dan, YIN Yuhuan, SUN Yaohua, WU Wei, QU Wenqing. Analysis of direct current A-TIG welding of 2A14 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 93-97. DOI: 10.12073/j.hjxb.2018390255
Citation: ZHANG Dan, YIN Yuhuan, SUN Yaohua, WU Wei, QU Wenqing. Analysis of direct current A-TIG welding of 2A14 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 93-97. DOI: 10.12073/j.hjxb.2018390255

Analysis of direct current A-TIG welding of 2A14 aluminum alloy

More Information
  • Received Date: April 15, 2017
  • According to the high flatness requirement of a specific aluminum component, the direct current activating TIG welding (DC A-TIG) has been realized by using a self-developed activating flux. The appearance, internal qualities, microstructures and mechanical properties of the DC A-TIG welds have been studied. The results indicate that when the activating flux concentration is 15%, a 2A14 DC A-TIG weld with good appearance, internal quality and mechanical property can be obtained. Comparing to the alternating current TIG (AC TIG) welds, the mechanical properties of the DC A-TIG welds are a little higher and the number of the micro porosities decreases dramatically.
  • 刘顺洪, 杜雯雯, 王任飞. A-TIG焊的研究现状和发展趋势[J]. 航空制造技术, 2010(9): 48 ? 50
    Liu Shunhong, Du Wenwen, Wang Renfei. Present situation and trend of research on A-TIG welding[J]. Aeronautical Manufacturing Technology, 2010(9): 48 ? 50
    Zhang R H, Fan D. Numerical simulation of effects of activating flux on flow patterns and weld penetration in ATIG welding[J]. Science and Technology of Welding and Joining, 2007, 12(1): 15 ? 23.
    陈 俐, 胡伦骥, 巩水利. 活性剂焊接技术研究[J]. 热技工工艺技术与装备, 2005(4): 39 ? 41
    Chen Li, Hu Lunji, Gong Shuili. Research on welding with active flux[J]. Hot Mechanic Technology and Equipment, 2005(4): 39 ? 41
    Howse D S, Lucas W. Investigation into arc constriction by active fluxes for tungstern inert gas welding[J]. Science and Technology of Welding and Joining, 2000, 5(3): 189 ? 193.
    Fan C L, Yang C L, Liang Y C, et al. Optimality analysis of multiplex A-TIG welding flux for nickel-base superalloy[J]. China Welding, 2007, 16(2): 46 ? 50.
    刘凤尧, 林三宝, 杨春利, 等. TIG焊活性剂对焊缝成形的影响[J]. 焊接学报, 2002, 23(1): 1 ? 4
    Liu Fengyao, Lin Sanbao, Yang Chunli, et al. Effect of activating fluxes on weld form in TIG welding of stainless steel and titanium alloy[J]. Transactions of the China Welding Institution, 2002, 23(1): 1 ? 4
    熊亮同, 周志刚, 董占贵. TA15钛合金A-TIG焊实验分析[J]. 焊接学报, 2009, 30(4): 49 ? 52
    Xiong Liangtong, Zhou Zhigang, Dong Zhangui. Activating tungsten inert gas welding for TA15 tianium alloy[J]. Transactions of the China Welding Institution, 2009, 30(4): 49 ? 52
    黄 勇, 樊 丁, 樊清华. 表面活性剂对铝合金直流正接A-TIG焊熔深的影响[J]. 焊接学报, 2004, 25(5): 60 ? 62
    Huang Yong, Fan Ding, Fan Qinghua. Influence of surface activating fluxs on the penetration of aluminum alloy A-TIG welds[J]. Transactions of the China Welding Institution, 2004, 25(5): 60 ? 62
    张学军, 李 艳, 张文杨, 等. 铝合金活性焊剂研究[J]. 焊接, 2012(7): 38 ? 41
    Zhang Xuejun, Li Yan, Zhang Wenyang, et al. Study of active welding flux for aluminum alloy[J]. Welding & Joining, 2012(7): 38 ? 41
    晏丽琴, 徐宏彤, 余国宏. 新型活性TIG焊工艺研究[J]. 自动化与仪器仪表, 2014(2): 23 ? 27
    Yan Liqin, Xu Hongtong, Yu Guohong. Research of the new activating TIG welding process[J]. Automation & Instrumentation, 2014(2): 23 ? 27
    严 铿, 高莉华, 杨 刚, 等. 单组分活性剂对铝合金A-TIG焊焊缝的影响[J]. 焊接学报, 2013, 34(2): 54 ? 58
    Yan Keng, Gao Lihua, Yang Gang, et al. Effects of single-component activating flux on weld morphologies in A-TIG welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(2): 54 ? 58
    尹玉环, 张 聃, 余 果, 等. 2219铝合金无气孔直流A-TIG焊接技术[J]. 焊接学报, 2017, 38(12): 61 ? 64
    Yin Yuhuan, Zhang Dan, Yu Guo, et al. Porosity free direct current A-TIG welding of 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2017, 38(12): 61 ? 64
  • Related Articles

    [1]MA Qiang, CHEN Mingxuan, MENG Junsheng, LI Chengshuo, SHI Xiaoping, PENG Xin. Microstructure and wear resistance of TiB2/Ni composite coating on pure copper surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 90-96. DOI: 10.12073/j.hjxb.20210202002
    [2]WANG Zhenting, FU Changjing, LIANG Gang, MENG Junsheng, WANG Xinzhi. In-situ synthesis of TiC-TiB2 anti-oxidation composite layer by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 103-107.
    [3]WANG Yongdong, LIU Xing, ZHENG Guanghai, ZHAO Xia. Microstructure and properties of in-situ synthesized TiC-TiB reinforced Fe based composite coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 67-70.
    [4]WANG Zhenting, GAO Hongming, LIANG Gang, DING Yuanzhu. Microstructure and wear resistance of Ti-based composite coating reinforced by in-situ synthesized TiC and TiB2 particulates on surface of Ti6Al4V alloy with arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 51-54.
    [5]MENG Junsheng, JI Zesheng. Microstructure and properties of in-situ TiC-TiB2/Ti composite coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 67-70.
    [6]WANG Xinhong, ZOU Zengda, QU Shiyao. Laser cladding of in-situ TiB_2-TiC particles reinforced Fe-based coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 25-28.
    [7]WANG Zhenting, DING Yuanzhu, LIANG Gang. Microstructure and wear resistance of in-situ synthesis TiB2-TiN particulates of composite coating reinforced titanium alloy surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 105-108.
    [8]LIU Junhai, HUANG Jihua, LIU Junbo, SONG Guixiang. TiC/Cr-Fe ceramal composite coating processed by PTA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 93-96.
    [9]HE Qingkun, WANG Yong, ZHAO Weimin, CHENG Yiyuan. Interface microstructure and wear properties of TiC-Ni-Mo coatings prepared by in-situ fabrication of laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 77-80100.
    [10]DU Baoshuai, LI Qingming, WANG Xinhong, ZOU Zengda. In situ synthesis of TiC-VC particles reinforced Fe-based metal matrix composite coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 65-68.
  • Cited by

    Periodical cited type(7)

    1. 张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
    2. 魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
    3. 刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
    4. 吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
    5. 马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 . 本站查看
    6. 王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 . 本站查看
    7. 陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return