Advanced Search
ZHANG Shufang, HAO Yunfei, WANG Xiaomin, CHEN Hui, LIAO Xiaoyao, LI Mingxing. Intergranular corrosion behavior of 2219 aluminum alloy's welding join[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 22-26. DOI: 10.12073/j.hjxb.20170405
Citation: ZHANG Shufang, HAO Yunfei, WANG Xiaomin, CHEN Hui, LIAO Xiaoyao, LI Mingxing. Intergranular corrosion behavior of 2219 aluminum alloy's welding join[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 22-26. DOI: 10.12073/j.hjxb.20170405

Intergranular corrosion behavior of 2219 aluminum alloy's welding join

More Information
  • Received Date: April 10, 2015
  • The corrosion behavior of 2219 aluminum alloy and its welding joints (made by FSW and TIG welding) were investigated through intergranular corrosion test and polarization curve measurement. Metalloscope, laser scanning confocal microscope and scanning electron microscopy were employed to analyze the corrosion morphology, and corrosion products were measured by energy spectrometer. The results show that the corrosion behavior of 2219 aluminum alloy and its welding joints are related to precipitated phase, and the precipitation of Al2Cu phase leads to the dissolution of poor Cu zone as the anode. The base metal shows the worst corrosion resistance ability, whose pitting corrosion develops to exfoliation corrosion along the rolling direction in corrosion media (NaCl+H2O2). The corrosion resistance of FSW joint is superior to that of TIG joint. TIG joint shows intergranular corrosion with network cracks, and FSW joint shows corrosion pits distributing scatteringly on the surface.
  • Mendez P F, Eagar T W. Welding processes for aeronautics[J]. Advanced Materials Process, 2001, 159(5): 39-42.
    贺地求, 邓 航, 周鹏展. 2219厚板搅拌摩擦焊组织及性能分析[J]. 焊接学报, 2007, 28(9): 14-16. He Diqiu, Deng Hang, Zhou Pengzhan. Analysis of microstructure and properties in friction-stir welding of 2219 thick plate[J]. Transactions of the China Welding Institution, 2007, 28(9): 13-16.
    Bousquet E, Poulon-Quintin N, Puiggali M, et al. Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint[J]. Corrosion Science, 2011, 53(9): 3026-3034.
    Srinivasan P B, Arora K S, Dietzel W, et al. Characterisation of microstructure, mechanical properties and corrosion behaviour of an AA2219 friction stir welding[J]. Journal of Alloy and Compounds, 2010, 492(1-2): 631-637.
    张 华, 孙大同, 张 贺, 等. 2219铝合金搅拌摩擦焊接头腐蚀行为[J]. 焊接学报, 2014, 35(7): 39-42. Zhang Hua, Sun Datong, Zhang He, et al.Corrosion behavior of friction stir welded 2219 aluminumalloy[J]. Transactions of the China Welding Institution, 2014, 35(7): 39-42.
    Mahmoud T S. Effect of friction stir processing on electrical conductivity and corrosion resistance of AA6063-T6 Al alloy[J]. Journal of Mechanical Engeering Science, 2008, 222(7): 1117-1123.
    Wei F X, Jin H L. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate[J]. Corrosion Science, 2009, 51(11): 2743-2751.
    Rossana G, Mark A B, James E Castle, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution[J]. Corrosion Science, 2010, 52(9): 2855-2866.
    Paglia C S, Buchheit R G. Microstructure, microchemistry and environmental cracking susceptibility of frictrion stir welded 2219-T87[J]. Materials Science and Engineering A, 2006, 429(1-2): 107-114.
    何 跃, 郑玉贵, 国旭明. 高强Al-Cu合金2219及其熔敷金属的点蚀行为[J]. 腐蚀科学与防护技术, 2005, 17(6): 387-390. He Yue, Zheng Yugui, Guo Xuming. Pitting corrosion of high strength Al-Cu alloy 2219 and its overlayers[J]. Corrosion Science and Protection Technology, 2005,17(6): 387-390.
    李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制[J]. 材料导报, 2005, 19(2): 81-83. Li Jinfeng, Zheng Zhiqiao, Ren Wenda. Function mechanism of secondary phase on localized corrosion of Al alloy[J]. Materials Review, 2005, 19(2): 81-83.
  • Related Articles

    [1]YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108.
    [2]WANG Chao, LI Xiaoyan, ZHU Yongxin. Influence of dwell time and loading rate on low cycle fatigue behavior of lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 71-75.
    [3]ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108.
    [4]ZHANG Liang, HAN Jiguang, GUO Yonghuan, HE Chengwen, LAI Zhongmin, WANG Hongwei. Fatigue life prediction of Sn3.9Ag0.6Cu-soldered joints in WLCSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 97-100.
    [5]WEI Helin, WANG Kuisheng. Numerical simulation of PBGA lead-free solder joints with consideration of IMC layer under thermal cycling condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 109-112.
    [6]SUN Chengzhi, CAO Guangjun. Fatigue life simulation of spot weld based on equivalent structure stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 105-108.
    [7]SHENG Zhong, XUE Songbai, ZHANG Liang, GAO Lili. Fatigue life prediction for flip chip soldered joints based on creep stain model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 53-56.
    [8]ZHANG Liang, XUE Songbai, HAN Zongjie, LU Fangyan, YU Shenglin, LAI Zhongmin. Fatigue life prediction of SnAgCu soldered joints of FCBGA device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 85-88.
    [9]WU Yuxiu, XUE Songbai, ZHANG Ling, HUANG Xiang. Optimum simulation and prediction on thermal fatigue life of soldered joints of QFP devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 99-102.
    [10]Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251.
  • Cited by

    Periodical cited type(12)

    1. 潘浩东,彭伟,孙国立,王剑,聂富刚,贺光辉. PCB各向异性行为对焊点疲劳寿命的影响研究. 印制电路信息. 2024(04): 43-48 .
    2. 杨浩,王小京,蔡珊珊. Sn57Bi0.1Sb钎料力学性能分析及Anand模型参数确定. 电子与封装. 2024(11): 26-30 .
    3. 李长安,牛玉秀,全本庆,关卫林. 共晶焊后热敏电阻的应力分析及优化. 电子与封装. 2023(09): 5-8 .
    4. 赵光亮,史家涛,刘栋,杨英振,栗军辉. 回流焊透锡致发动机控制器故障的分析与改进. 自动化应用. 2022(03): 27-29 .
    5. 徐鹏博,吕卫民,李永强,刘陵顺. 热循环下集成电路板疲劳寿命预测. 中国电子科学研究院学报. 2022(07): 697-703 .
    6. 邢睿思,王龙,侯传涛,宋俊柏. 锡铅钎料粘塑性行为及其本构描述. 力学季刊. 2022(03): 712-720 .
    7. 邹阳,郭波,段学俊,吴庆堂,魏巍,吴焕. 无铅焊点可靠性的研究进展. 焊接. 2021(08): 41-48+64 .
    8. 王海超,施海健,丁颖洁,马力. 基于数值模拟的印制电路板低透锡率焊盘焊接温度分析. 宇航材料工艺. 2020(04): 30-34 .
    9. 傅显惠,刘德喜,赵红霞,祝大龙. 接收前端3D封装结构的可靠性模拟分析. 电子元件与材料. 2020(09): 105-110 .
    10. 赵福斌,仇原鹰,贾斐,马洪波. 热振加载条件下电子封装结构的疲劳寿命分析. 西安电子科技大学学报. 2019(02): 54-60 .
    11. 彭勃,张普,陈天奇,赵崟岑,吴的海,刘晖. 高功率半导体激光器互连界面可靠性研究. 红外与激光工程. 2018(11): 109-116 .
    12. 肖祥慧,唐荣军,周影良. 基于改进IMC的磁头微焊点寿命预测模型研究. 磁性材料及器件. 2017(05): 60-62 .

    Other cited types(9)

Catalog

    Article views (362) PDF downloads (312) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return