Advanced Search
DENG Caiyan, SONG Mengmeng, GONG Baoming, WANG Dongpo. Effect of specimen thickness on the shift of the ductile-to-brittle transition curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 1-4. DOI: 10.12073/j.hjxb.2018390110
Citation: DENG Caiyan, SONG Mengmeng, GONG Baoming, WANG Dongpo. Effect of specimen thickness on the shift of the ductile-to-brittle transition curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 1-4. DOI: 10.12073/j.hjxb.2018390110

Effect of specimen thickness on the shift of the ductile-to-brittle transition curve

More Information
  • Received Date: September 24, 2016
  • According to BSI 7448 Part I, this paper designed three types of CTOD specimens with different thickness B of E36 steel, and CTOD tests were carried out at various temperatures to determine their ductile-brittle transition temperature curve. The test results revealed that E36 steel shows typical ductile-brittle transition characteristic and its ductile-brittle transition curve can be fitted well by Boltzmann function. What’s more, with the increase of the test specimen thickness(TST), the ductile-brittle transition curve shifts to higher temperature. In order to investigate the TST effect on the fracture toughness, an elastic-plastic finite element method (FEM) is used to analyze the stress distributions ahead of crack tips. We found that the out-of-plane constraint parameter Tzcan demonstrate the TST effect on the ductile-brittle transition temperature.
  • Chen Z A, Zeng Z, Chao Y J. Effect of crack depth on the shift of the ductile-brittle transition curve of steels[J]. Engineering Fracture Mechanics, 2007, 74(15): 2437-2448.[2] Meshii T, Lu K, Fujiwara Y. Extended investigation of the test specimen thickness (TST) effect on the fracture toughness (Jc) of a material in the ductile-to-brittle transition temperature region as a difference in the crack tip constraint——What is the loss of constraint in the TST effects onJc[J]. Engineering Fracture Mechanics, 2015, 135: 286-294.[3] 陈忠安, 徐 冉, 曾 振. Weibull应力方法预测低合金钢的韧脆转化曲线[J]. 工程力学, 2007, 24(12): 25-30.Chen Zhongan, Xu Ran, Zeng Zhen. Prediction of the ductile-brittle transition curve of ferritic steels using weibull stress methodology[J]. Engineering Mechanics, 2007, 24(12): 25-30.[4] 王元清, 周 晖, 石永久, 等. 钢结构厚板的低温断裂韧性试验[J]. 沈阳工业大学学报, 2013, 35(2): 224-229.Wang Yuanqing, Zhou Hui, Shi Yongjiu,et al. Fracture toughness tests at low temperature for thick plate in steel structures[J]. Journal of Shenyang University of Technology, 2013, 35(2): 224-229.[5] British Standard Institution. BS7448-2-1997. Method for determination of KIC, critical CTOD and critical J values of welds in metallic materials[S]. Britain: British Standard Institution, 1997.[6] 胡宗文. 钢结构厚板及焊缝脆性断裂的力学性能研究[D]. 北京: 清华大学, 2010.[7] 荆洪阳, 徐连勇, 霍立兴, 等. 韧-脆转变温度区间内焊接接头断裂韧度预测[J]. 焊接学报, 2004, 25(1): 45-47.Jing Hongyang, Xu Lianyong, Huo Lixing,et al. Prediction of fracture toughness for welded joints in brittle-ductile transition temperture[J]. Transactions of the China Welding Institution, 2004, 25(1) 45-47.[8] 杨 杰, 王国珍, 轩福贞, 等. 基于裂尖等效塑性应变的面内与面外统一拘束参数的研究[J]. 核技术, 2013, 36(4):040643-15.Yang Jie, Wang Guozhen, Xuan Fuzhen,et al. Study on the unified constraint parameter for characterizing in-plane and out-of-plane constraint based on the equivalent plastic strain[J]. Nuclear Techniques, 2013, 36(4): 040643-15.[9] Guo W. Elastoplastic three dimensional crack border field—II. asymptotic solution for the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 105-113.[10] Guo W. Elastoplastic three dimensional crack border field—I. singular structure of the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 93-104.
  • Related Articles

    [1]XIA Congcong, ZHAO Yangyang, DAI Lianshuang, GONG Baoming, DENG Caiyan, WANG Dongpo. Research on the constraint of SE(T) specimen based on crack tip plastic zone parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 1-7. DOI: 10.12073/j.hjxb.20220718003
    [2]JING Hongyang, LI Shibo, XU Lianyong, ZHAO Lei. Experimental study on high temperature fracture toughness of P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 8-12. DOI: 10.12073/j.hjxb.2019400033
    [3]HAN Yongdian, LI Zhan, XU Lianyong, JING Hongyang, ZHAO Lei. Constraint effect of corrosion fatigue crack growth behavior in S690 high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 13-18. DOI: 10.12073/j.hjxb.2018390290
    [4]JIA Pengyu1,2, JING Hongyang1, XU Lianyong1, WEI Chen2. Construction of J-R curve for X80 steel based on constraint level[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 31-35. DOI: 10.12073/j.hjxb.2018390090
    [5]MIAO Zhang-mu, WU Wei-guo, TAO De-xin, XIE Zhi-hua. Evaluation of welding procedure specification with crack tip opening displacement in steel box beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 77-80.
    [6]ZHANG Min, DING Fang, ZHOU Yong-xin, XU De-sheng, CHENG Zu-hai. Analysis of crack-tip stress-strain field and fracture parameter of welded joints containing crack on fusion line (II)[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 47-51.
    [7]ZHANG Min, DING Fang, LÜ Zhen-lin, XU De-sheng, CHENG Zu-hai. Analysis of crack-tip stress-strain field and fracture parameter of welded joint with a crack on fusion line(I)[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 13-18.
    [8]JING Hong-yang, XU Lian-yong, HUO Li-xing, ZHANG Yu-feng. Prediction of fracture toughness for welded joints in brittle-ductile transition temperture[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 45-47,51.
    [9]LU Qing-hua, ZHANG Yu-feng, HUO Li-xing, ZHANG Li. Effect of prestrain on impact toughness and ductile-brittle transition temperature of welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 43-46.
    [10]Na Jingxin, Ren Zhenan, Zhenfeng. Calculating Restraint Intensity of Restraint Specimen of Cast Iron and Evaluating Quantitatively Cold Cracking Tendency of Cast Iron Weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 196-201.
  • Cited by

    Periodical cited type(7)

    1. 于洋,高志伟,龚宝明,邓彩艳,刘锦,苏显栋. 硫化氢环境中X80管线钢焊接粗晶热影响区的断裂韧性. 焊接. 2025(01): 40-45 .
    2. 李国强,俞海兵,巫元俊. 基于多温度SDFF模型的反应堆压力容器钢韧脆转变区韧性评价. 机械工程材料. 2024(11): 111-118 .
    3. 陈昌荣,周孙盛,何华,练国富,黄旭,冯美艳. 基于抛物线模型的V形坡口焊道规划排布. 焊接学报. 2023(07): 79-88+133-134 . 本站查看
    4. 巫元俊,徐习凯,包陈,蔡力勋. 考虑几何尺寸影响的RPV钢韧脆转变实验研究. 力学学报. 2023(10): 2363-2372 .
    5. 冯超,赵雷,徐连勇,韩永典,郭慧娟. 海洋平台导管架Y形节点焊接冷裂性评价. 焊接. 2021(12): 1-6+63 .
    6. 宫旭辉,薛钢,高珍鹏,马骞,付安新. 船用低合金高强钢止裂温度相关性研究. 材料开发与应用. 2021(06): 1-6+35 .
    7. 王东坡,刘恺悦,邓彩艳,龚宝明,吴世品,肖娜. 焊后热处理对拘束焊焊缝金属冲击韧性与断裂韧性的影响. 焊接学报. 2020(08): 63-67+78+100-101 . 本站查看

    Other cited types(5)

Catalog

    Article views (487) PDF downloads (4) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return