Advanced Search
DENG Caiyan, SONG Mengmeng, GONG Baoming, WANG Dongpo. Effect of specimen thickness on the shift of the ductile-to-brittle transition curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 1-4. DOI: 10.12073/j.hjxb.2018390110
Citation: DENG Caiyan, SONG Mengmeng, GONG Baoming, WANG Dongpo. Effect of specimen thickness on the shift of the ductile-to-brittle transition curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 1-4. DOI: 10.12073/j.hjxb.2018390110

Effect of specimen thickness on the shift of the ductile-to-brittle transition curve

More Information
  • Received Date: September 24, 2016
  • According to BSI 7448 Part I, this paper designed three types of CTOD specimens with different thickness B of E36 steel, and CTOD tests were carried out at various temperatures to determine their ductile-brittle transition temperature curve. The test results revealed that E36 steel shows typical ductile-brittle transition characteristic and its ductile-brittle transition curve can be fitted well by Boltzmann function. What’s more, with the increase of the test specimen thickness(TST), the ductile-brittle transition curve shifts to higher temperature. In order to investigate the TST effect on the fracture toughness, an elastic-plastic finite element method (FEM) is used to analyze the stress distributions ahead of crack tips. We found that the out-of-plane constraint parameter Tzcan demonstrate the TST effect on the ductile-brittle transition temperature.
  • Chen Z A, Zeng Z, Chao Y J. Effect of crack depth on the shift of the ductile-brittle transition curve of steels[J]. Engineering Fracture Mechanics, 2007, 74(15): 2437-2448.[2] Meshii T, Lu K, Fujiwara Y. Extended investigation of the test specimen thickness (TST) effect on the fracture toughness (Jc) of a material in the ductile-to-brittle transition temperature region as a difference in the crack tip constraint——What is the loss of constraint in the TST effects onJc[J]. Engineering Fracture Mechanics, 2015, 135: 286-294.[3] 陈忠安, 徐 冉, 曾 振. Weibull应力方法预测低合金钢的韧脆转化曲线[J]. 工程力学, 2007, 24(12): 25-30.Chen Zhongan, Xu Ran, Zeng Zhen. Prediction of the ductile-brittle transition curve of ferritic steels using weibull stress methodology[J]. Engineering Mechanics, 2007, 24(12): 25-30.[4] 王元清, 周 晖, 石永久, 等. 钢结构厚板的低温断裂韧性试验[J]. 沈阳工业大学学报, 2013, 35(2): 224-229.Wang Yuanqing, Zhou Hui, Shi Yongjiu,et al. Fracture toughness tests at low temperature for thick plate in steel structures[J]. Journal of Shenyang University of Technology, 2013, 35(2): 224-229.[5] British Standard Institution. BS7448-2-1997. Method for determination of KIC, critical CTOD and critical J values of welds in metallic materials[S]. Britain: British Standard Institution, 1997.[6] 胡宗文. 钢结构厚板及焊缝脆性断裂的力学性能研究[D]. 北京: 清华大学, 2010.[7] 荆洪阳, 徐连勇, 霍立兴, 等. 韧-脆转变温度区间内焊接接头断裂韧度预测[J]. 焊接学报, 2004, 25(1): 45-47.Jing Hongyang, Xu Lianyong, Huo Lixing,et al. Prediction of fracture toughness for welded joints in brittle-ductile transition temperture[J]. Transactions of the China Welding Institution, 2004, 25(1) 45-47.[8] 杨 杰, 王国珍, 轩福贞, 等. 基于裂尖等效塑性应变的面内与面外统一拘束参数的研究[J]. 核技术, 2013, 36(4):040643-15.Yang Jie, Wang Guozhen, Xuan Fuzhen,et al. Study on the unified constraint parameter for characterizing in-plane and out-of-plane constraint based on the equivalent plastic strain[J]. Nuclear Techniques, 2013, 36(4): 040643-15.[9] Guo W. Elastoplastic three dimensional crack border field—II. asymptotic solution for the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 105-113.[10] Guo W. Elastoplastic three dimensional crack border field—I. singular structure of the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 93-104.
  • Related Articles

    [1]XU Xiangping, WANG Hong, ZOU Jiasheng, XIA Chunzhi. Interfacial structure and properties of Si3N4 ceramic and TiAl alloys brazed with Ti/Ag-Cu/Cu interlayers[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 91-94.
    [2]YANG Fan, LIN Qiaoli, ZHOU Yanlin, CAO Rui. Wetting dynamic characteristics and interfacial structures in CMT welding process of Mg-steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 45-48.
    [3]LIU Shiyan, ZHANG Lixia, QI Junlei, FENG Jicai. Vacuum diffusion brazing of SiCp/Al composites[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 117-120.
    [4]LI Haixin, WEI Hongmei, HE Peng, FENG Jicai. Interfacial microstructure and bonding strength of diffusion bonded TiAl/Ti/Nb/GH99 alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 9-12.
    [5]GUAN Yancong, ZHENG Minli, YAO Deming. Interfacial structure and strength of Cu-based filler metal welding diamond[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 65-68.
    [6]LI Haixin, LIN Tiesong, HE Peng, WEI Hongmei, FENG Jicai. Effect of holding time on interface structure and bonding strength of diffusion bonding joint of TiAl and Ni-based alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 43-46.
    [7]YANG Weihua, LI Jinglong, XIONG Jiangtao, ZHANG Fusheng, LÜ Xuechao. Morphological analysis of interfacial reaction layers in Mo foil and Al foil jointing by diffusion bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 41-45.
    [8]YAO Wei, WU Aiping, ZOU Guisheng, REN Jialie. Structure and performance of LF6/TA2 diffusion bonded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 89-92,96.
    [9]WANG Juan, LI Ya-jiang, MA Hai-jun, LIU Peng. Microstructure characteristics of Fe3Al/18-8 diffusion welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 19-22.
    [10]Liu Huijie, Feng Jicai, Qian Yiyu. Interface Structures and Bonding Strength of SiC/TiAl Joints in Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 170-174.

Catalog

    Article views (487) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return