Advanced Search
XU Xiangping, WANG Hong, ZOU Jiasheng, XIA Chunzhi. Interfacial structure and properties of Si3N4 ceramic and TiAl alloys brazed with Ti/Ag-Cu/Cu interlayers[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 91-94.
Citation: XU Xiangping, WANG Hong, ZOU Jiasheng, XIA Chunzhi. Interfacial structure and properties of Si3N4 ceramic and TiAl alloys brazed with Ti/Ag-Cu/Cu interlayers[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 91-94.

Interfacial structure and properties of Si3N4 ceramic and TiAl alloys brazed with Ti/Ag-Cu/Cu interlayers

More Information
  • Received Date: December 07, 2014
  • The Si3N4 ceramics was brazed to TiAl alloys with Ti/Ag-Cu/Cu as the interlays, and a good joint was obtained. The interfacial microstructure of the joint and the elements were analyzed by scanning electron microscope (SEM) and energy dispersive spectrometer distribution (EDS). The results show that the typical interfacial microstructure of Si3N4/Ti/Ag-Cu/Cu/TiAl may be Si3N4/TiN/Ti-Si/Cu-Ti+Ag(s,s)+Cu(s,s)/AlCuTi/TiAl. The influences of brazing temperature, holding time and the pressure of the joint on the four-point bending strength of the joint were researched by using controlling variables method. The four-point bending strength of the joint reaches the maximum of 170 MPa when the brazing temperature, holding time and the pressure of the joint are 1 133 K, 30 min and 0.040 MPa, respectively.
  • 张德库, 张文军, 蒋佳敏. 采用Cu-Ti钎料高温连接Si3N4陶瓷[J]. 焊接学报, 2014, 35(5):59-62. Zhang Deku, Zhang Wenjun, Jiang Jiamin. High temperature brazing of Si3N4 ceramic using Cu-Ti active filler metal[J]. Transactions of the China Welding Institution, 2014, 35(5):59-62.
    赵其章, 王磊, 邹家生. Ag-Cu-Ti急冷钎料钎焊Si3N4陶瓷接头界面结构及性能[J]. 江苏科技大学学报(自然科学版), 2009, 23(6):500-504. Zhao Qizhang, Wang Lei, Zou Jiasheng. Microstructure and properties of Si3N4 ceramic joint brazed with rapidly-cooled Ag-Cu-Ti filler metals[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2009, 23(6):500-504.
    Noda T, Shimizu T, Okabe M, et al. Joining of TiAl and steels by induction brazing[J]. Materials Science and Engineering A, 1997, 239-240(1-2):613-618.
    Noda T. Application ofcast gamma TiAl for automobiles[J]. Intermetallics, 1998, 6(7-8):709-713.
    曹健, 宋晓国, 王义峰, 等. Si3N4/Ni/TiAl扩散连接接头界面结构及性能[J]. 焊接学报, 2011, 32(6):1-4. Cao Jian, Song Xiaoguo, Wang Yifeng, et al. Interfacial microstructure and properties of Si3N4/Ni/TiAl joint boned by diffusion-bonding[J]. Transactions of the China Welding Institution, 2011, 32(6):1-4.
    邹贵生, 吴爱萍, 任家烈, 等. 用Al-Ti和Al-Zr合金在大气中连接Si3N4陶瓷[J]. 焊接, 2001(3):13-15. Zou Guisheng, Wu Aiping, Ren Jialie, et al. Bonding of Si3N4 ceramic with Al-Ti and Al-Zr alloys in air[J]. Welding & Joining, 2001(3):13-15.
    邹家生, 许宗阳, 许祥平. TiZrCuB非晶钎料钎焊Si3N4陶瓷的研究[J]. 江苏科技大学学报(自然科学版), 2012, 26(2):129-132. Zou Jiasheng, Xu Zongyang, Xu Xiangping. Study on brazing of Si3N4with TiZrCuB amorphous filler metal[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2012, 26(2):129-132.
    周媛, 熊华平, 陈波, 等. 以铜和Cu-Ti作为中间层的TiAl/GH3536扩散焊[J]. 焊接学报, 2012, 33(2):18-20. Zhou Yuan, Xiong Huaping, Chen Bo, et al. Diffusion bonding of TiAl and GH3536 superalloy with Cu and Cu-Ti as interlayers[J]. Transactions of the China Welding Institution, 2012, 33(2):18-20.
  • Related Articles

    [1]YANG Tao, WANG Yuan, ZHUANG Yuan, YANG Ruixin, ZENG Junyan, LI Huanyu. Weakening mechanism of 301L stainless steel welded joints by the laser arc hybrid heat source mode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 56-61. DOI: 10.12073/j.hjxb.20211202006
    [2]LI Zeyu, XU Lianyong, HAO Kangda, ZHAO Lei, JING Hongyang. Microstructure and properties of MAG and oscillating laser arc hybrid welded X80 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 36-42. DOI: 10.12073/j.hjxb.20220101002
    [3]CHEN Genyu, ZHANG Yan, LEI Ran. Testing of hot crack using laser-MAG combined welding for 42CrMo steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 61-66. DOI: 10.12073/j.hjxb.2019400182
    [4]YANG Tao, HE Shuang, CHEN Yong, TIAN Honglei, CHEN Hui. Arc characteristics and weld formation during laser-pulsed MAG hybrid arc welding of 304L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 65-69.
    [5]FAN Chenglei, XIE Weifeng, YANG Chunli, ZHUANG Xiaowei, LIN Sanbao. Effect of CO2 content for droplet transfer in ultrasound-MAG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 18-22.
    [6]ZHU Yanli, LI Huan, YANG Lijun, GAO Ying. Development of hybrid laser+double wire MIG/MAG welding system and process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 28-32.
    [7]WU Yanming, WANG Wei, LIN Shangyang, WANG Xuyou. Analysis of droplet behavior in Nd:YAG laser-pulsed MAG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 83-86,112.
    [8]LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28.
    [9]KANG Le, HUANG Ruisheng, LIU Liming, LIU Jinghe. Low-power YAG laser-MAG arc hybrid welding of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 69-72.
    [10]WANG Wei, WANG Xu-you, ZHAO Zi-liang, LENG Kai-bo, BU Da-chuan. Influential factors in laser-MAG hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 6-10.

Catalog

    Article views (443) PDF downloads (204) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return