Advanced Search
LI Hui1,2, ZOU Jiasheng1, YAO Junshan2, QU Wenqing3. Direct current straight polarity A-TIG welding technology of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 89-93,116. DOI: 10.12073/j.hjxb.2018390075
Citation: LI Hui1,2, ZOU Jiasheng1, YAO Junshan2, QU Wenqing3. Direct current straight polarity A-TIG welding technology of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 89-93,116. DOI: 10.12073/j.hjxb.2018390075

Direct current straight polarity A-TIG welding technology of 2219 aluminum alloy

More Information
  • Received Date: August 15, 2016
  • A new welding method was proposed innovatively for joining 2219 aluminum alloy. The welding surface was coated with a thin layer of activating flux with a function of removing the oxide film and gas before welding. And direct current straight polarity TIG welding method of 2219 aluminum alloy was obtained. This paper investigated the effect of activating flux concentration on the weld surface appearance, porosity defect, microstructure and mechanical properties of 2219 aluminum alloy joints by direct current straight polarity A-TIG welding. The results showed that the 2219 aluminum joint with pore-free, sound surface appearance and excellent mechanical properties was obtained when the activating flux concentration was up to 10%. Compared with the variable polarity TIG welding, direct current straight polarity A-TIG welding presented better arc stability, less heat input, more excellent welding quality.
  • Immarigeon J P, Holt R T, Koul A K,et al. Light weight materials for aircraft applications[J]. Materials Characterization, 1995, 35(1): 41-67.[2] 刘志华, 赵 兵, 赵 青. 21世纪航天工业铝合金焊接工艺技术展望[J]. 导弹与航天运载技术, 2002(5): 63-65.Liu Zhihua, Zhao Bing, Zhao Qing. Prospects forwelding technology of aluminum alloy in aerospace industry in 21st century[J]. Missiles and Space Vehicles, 2002(5): 63-65.[3] 周万盛, 姚君山. 铝及铝合金的焊接 第1版[M]. 北京: 机械工业出版社, 2006.[4] 黄 勇, 樊 丁, 邵 锋. 活性剂增加铝合金交流FZ-TIG焊熔深机理[J]. 机械工程学报, 2010, 46(16): 113-118.Huang Yong, Fan Ding, Shao Feng. Mechanism of activating fluxes increasing weld penetration of AC FZ-TIG welding for aluminum alloys[J]. Journal of Mechanical Engineering, 2010, 46(16): 113-118.[5] 严 铿, 高莉华, 杨 刚, 等. 单组分活性剂对铝合金A-TIG焊焊缝的影响[J]. 焊接学报, 2013, 34(2): 55-62.Yan Keng, Gao Lihua, Yang Gang,et al. Effect of single-component activating flux on weld morphologies in A-TIG welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(2): 55-62.[6] 严 铿, 杨 刚, 赵 勇, 等. 铝合金A-TIG焊电弧光谱分析[J]. 焊接学报, 2012, 33(3): 73-76,105.Yan Keng, Yang Gang, Zhao Yong,et al. Spectrum analysis of A-TIG welding for aluminum alloy[J]. Transactions of the China Welding Institution, 2012, 33(3): 73-76, 105.[7] 陈 俐, 胡伦骥, 巩水利. 活性剂焊接技术研究[J]. 新技术新工艺, 2005(4): 39-41.Chen Li, Hu Lunji, Gong Shuili. Research on welding with active flux[J]. New Technology & New Process, 2005(4): 39-41.[8] Arivazhagan B, Vasudevan M. Studies on A-TIG welding of 2.25Cr-1Mo (P22) steel[J]. Journal of Manufacturing Processes, 2015, 18: 55-59.[9] Srirangan A K, Paulraj S. Experimental investigation of the A-TIG welding process of Incoloy 800H[J]. Materials and Manufacturing Processes, 2015, 30: 1154-1159.[10] Vishnuvaradhan, Chandrasekhar N, Vasudevan M,et al. Intelligent modeling using adaptive neuro fuzzy inference system (ANFIS) for predicting weld bead shape parameters during A-TIG welding of reduced activation ferritic-Martensitic (RAFM) Steel[J]. Transactions of the Indian Institute of Metals, 2013, 66(1): 57-63.[11] Nanda N K, Balasubramanian K R, Vasudevan M. Finite element simulation of A-TIG welding of duplex stainless steel 2205 using sysweld[J]. Applied Mechanics and Materials, 2014, 592-594: 374-379.[12] 王林志. 活性剂对AZ31镁合金钨极氩弧焊和激光焊接接头微观组织和力学性能的影响[D]. 重庆: 重庆大学, 2011.[13] 刘凤尧, 林三宝, 杨春利, 等. TIG焊活性剂对焊缝成形的影响[J]. 焊接学报, 2002, 23(1): 1-4.Liu Fengyao, Lin Sanbao, Yang Chunli,et al. Effect of activating fluxes on weld form in TIG welding of stainless steel and titanium alloy[J]. Transactions of the China Welding Institution, 2002, 23(1): 1-4.[14] 吴飞虎. 钛合金的A-TIG焊活性剂的研制[D]. 兰州: 兰州理工大学, 2011.[15] 黄 勇, 樊 丁, 樊清华. 活性剂增加铝合金交流A-TIG焊熔深机理研究[J]. 机械工程学报, 2006, 42(5): 45-49.Huang Yong, Fan Ding, Fan Qinghua. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy[J]. Chinese Journal of Mchanical Engineering, 2006, 42(5): 45-49.[][][16] 张志勇, 张晓牧, 彭 云, 等. 高强度铝合金厚板焊接气孔形态分析及混合保护气体效应[J]. 焊接, 2004(7): 13-15.Zhang Zhiyong, Zhang Xiaomu, Peng Yun,et al. Analysis of porosity characteristics in weld metal of high strength aluminum alloy thick plate and effect of mixed protective gas[J]. Welding & Joining, 2004(7): 13-15.
  • Related Articles

    [1]LIU Jun, MENG Xianguo, LI Chenxi, LI Shuangji, SUN Zerui, LIU Hong. Microstructure and properties of 2219-T651 aluminum alloy welded joint by laser oscillating welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 7-13. DOI: 10.12073/j.hjxb.20220507001
    [2]DU Bo, YANG Xinqi, SUN Zhuanping, WANG Dongpo. Microstructures and properties of 2219-T87 aluminum alloy friction pull plug welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 128-132. DOI: 10.12073/j.hjxb.2019400055
    [3]ZHANG Dan, YIN Yuhuan, SUN Yaohua, WU Wei, QU Wenqing. Analysis of direct current A-TIG welding of 2A14 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 93-97. DOI: 10.12073/j.hjxb.2018390255
    [4]ZHOU Zheng<sup>1</sup>, WANG Guoqing<sup>2</sup>, SONG Jianlin<sup>3</sup>, ZHAO Hongxing<sup>1</sup>, YANG Chunli<sup>1</sup>. Microstructure and mechanical properties of 2219 aluminum alloys TIG welding welded joints in different shielding gases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 47-50. DOI: 10.12073/j.hjxb.2018390173
    [5]ZHANG Shufang, HAO Yunfei, WANG Xiaomin, CHEN Hui, LIAO Xiaoyao, LI Mingxing. Intergranular corrosion behavior of 2219 aluminum alloy's welding join[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 22-26. DOI: 10.12073/j.hjxb.20170405
    [6]WANG Guoqing, XIONG Linyu, TIAN Zhijie, DONG Kangying, Liu Qi. Microstructure and property of TIG welded 2219 aluminum alloy by different heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 121-124.
    [7]LI Xian, SONG Yonglun, LU Zhenyang, SUN Yujuan. High frequency energy coupling pulsed TIG welding process on 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 17-20.
    [8]DU Yanfeng, BAI Jingbin, TIAN Zhijie, LI Jinsong, ZHANG Yanhua. Investigation on three-dimensional real coupling numerical simulation of temperature field of friction stir welding of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 57-60,70.
    [9]WANG Chunyan, QU Wenqing, YAO Junshan, ZHAO Haiyun. Microstructures and mechanical properties of friction stir welded 2219-T87 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 77-80,84.
    [10]XU Weifeng, LIU Jinhe, ZHU Hongqiang. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 63-66,78.
  • Cited by

    Periodical cited type(8)

    1. 李宁宁,徐雷,陈希,彭进,黄亮. 铝合金危化品罐车封头双面TIG打底焊接工艺. 热加工工艺. 2021(03): 16-19 .
    2. 魏保立,罗坤,付伟,罗丽兰. 机械振动对2A14铝合金TIG焊接接头组织与性能的影响. 轻合金加工技术. 2021(04): 68-73 .
    3. 邓嘉宏,刘红,刘继帼. 机械振动对2A14铝合金TIG焊接接头组织与性能的影响. 轻合金加工技术. 2021(05): 56-61 .
    4. 黄勇,薛旭普. MnCl_2引入对粉末熔池耦合活性TIG焊交流电弧的影响. 电焊机. 2021(11): 8-13+145 .
    5. 高增,巴现礼,杨环宇,尹聪鑫,牛济泰. 含Sc、Ce、Be的TiB_2原位增强焊丝与4047焊丝对SiCp/AlMMCs的TIG焊研究. 稀有金属材料与工程. 2020(10): 3465-3471 .
    6. 张国栋,龚卓,郑飞,温志高,彭明诚. 过共晶铸造铝硅合金A-TIG重熔组织和性能. 焊接. 2019(07): 21-25+66 .
    7. 贾坤宁,石景岩,刘威. 2A12/5052异种铝合金激光焊接头的组织与性能. 材料热处理学报. 2018(10): 126-132 .
    8. 张攀,王湘江. 核用A-TIG焊活性剂配比及对焊缝性能影响. 南华大学学报(自然科学版). 2018(05): 76-80 .

    Other cited types(6)

Catalog

    Article views (729) PDF downloads (5) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return