Advanced Search
HUANG Yewen1, LIU Fangjun1, XU Haiying2, ZHANG Wei1, LI Pinglin1. Numerical simulation of thin plates on welding stress and distortion of EBW with multi-beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 52-56. DOI: 10.12073/j.hjxb.2018390067
Citation: HUANG Yewen1, LIU Fangjun1, XU Haiying2, ZHANG Wei1, LI Pinglin1. Numerical simulation of thin plates on welding stress and distortion of EBW with multi-beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 52-56. DOI: 10.12073/j.hjxb.2018390067

Numerical simulation of thin plates on welding stress and distortion of EBW with multi-beam

More Information
  • Received Date: August 11, 2016
  • Electron beam welding (EBW) with multi-beam method that employs the main beam for welding and two other beams for pre-heating the material regions simultaneously on both sides of the welding seam from a certain distance was proposed for mitigation of welding distortions of thin plates. The uniform rectangular assistant heating source model was established. The numerical simulation of EBW with multi-beam for 1.5 mm thick 304 stainless steel sheet by the thermo-elastoplastic finite element analysis (FEM) method and corresponding experimental test was carried out. The results showed that the simulation values of welding residual stresses and distortions were accordant with the measured values well. EBW with multi-beam can change the stress state of the materials located in front of the molten pool and reduce the peak value of compressive stress of the same position at the moment of molten pool formation, which can effectively reduce the compressive plastic strain, so as to decrease the welding distortion of thin plate.
  • 刘西霞. 钛合金薄板激光焊接变形控制研究[D]. 长沙: 湖南大学, 2014.[2] 张建勋, 刘 川. 焊接应力变形有限元计算及其工程应用[M]. 北京: 科学出版社, 2015.[3] Vasantharaja P, Vasudevan M, Palanichamy P. Effect of welding processes on the residual stress and distortion in type 316LN stainless steel weld joints[J]. Journal of Manufacturing Processes, 2015, 19: 187-193.[4] Fu Pengfei, Mao Zhiyong, Lin Jian. Temperature field modeling and microstructure analysis of EBW with multi-beam for nearαtitanium alloy[J]. Vacuum, 2014, 102: 54-62.[5] Piotr Lacki, Konrad Adamus, Pawel Wieczorek. Theoretical and experimental analysis of thermo-mechanical phenomena during electron beam welding process[J]. Computational Materials Science, 2014, 94: 17-28.[6] Tolle F, Gumenyuk A, Backhaus A,et al. Welding residual stress reduction by scanning of a defocused beam[J]. Journal of Materials Processing Technology, 2012, 212: 19-26.[7] 尹 昕, 赵海燕, 刘大成,等. 双束电子束焊接温度场的数值模拟[J]. 清华大学学报(自然科学版), 2008, 48(5): 777-780.Yin Xin, Zhao Haiyan, Liu Dacheng,et al. Numerical simulations of temperature fields duriing electron beam welding using the double-beam technique[J]. Journal of Tsinghua University(Science and Technology), 2008, 48(5): 777-780.[8] 李智钟, 周建平, 许 燕, 等. 基于Sysweld的T形管焊接件温度及应力应变场数值模拟分析[J]. 焊接学报, 2016, 37(4): 77-81.Li Zhizhong, Zhou Jianping, Xu Yan,et al. Numerical simulation analysis on T-shaped pipe weldments temperature and stress-strain field based on Sysweld[J]. Transactions of the China Welding Institution, 2016, 37(4): 77-81.[9] Ye Yanhong, Cai Jianpeng,Jiang Xiaohua,et al. Influence of groove type on welding-induced residual stress deformation and width of sensitization region in a SUS304 steel butt welded joint[J]. Advances in Engineering Software, 2015, 86: 39-48.[10] 李 菊. 钛合金低应力无变形焊接过程机理研究[D]. 北京: 北京工业大学, 2004.
  • Related Articles

    [1]WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001
    [2]ZHUO Wenbo, TAN Guobi, CHEN Qiuren, HOU Zehong, WANG Xianhui, HAN Weijian, HUANG Li. Multi-objective optimization of resistance spot welding process parameters of ultra-high strength steel based on agent model and NSGA-Ⅱ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 20-25. DOI: 10.12073/j.hjxb.20230317002
    [3]GONG Zhaoliang, JIANG Ping, SHI Jianhong, XU Kaiqin, GENG Shaoning, SHU Leshi. Optimization of laser lap welding process of power battery 1060 aluminum alloy sheet with adjustable ring spot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 67-79. DOI: 10.12073/j.hjxb.20230117001
    [4]ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Parameters optimization of small scale spot welding for titanium alloy via Taguchi experiment and grey relational analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 101-104. DOI: 10.12073/j.hjxb.2018390132
    [5]SHU Fuhua, TIAN Huifang. Process parameters optimization of pulsed laser welding of 6061 aluminum alloy based on SPA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 109-114. DOI: 10.12073/j.hjxb.2018390106
    [6]LU Zhenyang, TANG Chao, XIONG Wei, HUANG Pengfei. Parameter optimization for MAG of DP780[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 9-12.
    [7]WANG Hongxiao, SHI Chunyuan, WANG Chunsheng, WANG Ting. Optimization of laser welding parameters of stainless steel vehicle body based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 69-72.
    [8]LIU Wei, CHEN Guoqing, ZHANG Binggang, FENG Jicai. Investigation on process optimization of Cu Ti electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 89-92.
    [9]LIU Xue-mei, YAO Jun-shan, ZHANG Yan-hua. Optimization for friction surfacing parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 99-102.
    [10]ZHANC Ben-sheng, ZHOU Hong, YU Yong-li. Optimizing Parameters or A New Sprying Material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 58-60.
  • Cited by

    Periodical cited type(6)

    1. 黄伟波,赵晓宇. 选区激光熔化成形参数对熔池尺寸的影响. 肇庆学院学报. 2023(05): 65-73+79 .
    2. 王鹏,马蕊,魏永胜,李萍. TC4钛合金不同焊接方法焊接性及接头性能分析. 焊管. 2022(08): 17-23 .
    3. 邓新国,游纬豪,徐海威. 贝叶斯极限梯度提升机结合粒子群算法的电阻点焊参数预测. 电子与信息学报. 2021(04): 1042-1049 .
    4. 易润华,邓黎鹏,程东海,刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究. 材料导报. 2021(14): 14161-14165 .
    5. 宋少东,王燕燕,舒林森,何雅娟. 基于NSGA-Ⅱ的Fe基合金激光熔覆工艺参数优化. 电焊机. 2021(12): 1-5+126 .
    6. 邢晓芳,贲强,周勇,路浩,韩佩. 基于回归分析的螺母凸焊工艺优化. 焊接学报. 2020(12): 91-96+102 . 本站查看

    Other cited types(7)

Catalog

    Article views (532) PDF downloads (1) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return