Advanced Search
ZHANG Xiaohong, CHEN Jingqing, CHEN Hui. Simulation on pulsed-MIG welding process of Al-Mg-Zn aluminum alloy by FEA based on hybrid heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 17-21. DOI: 10.12073/j.hjxb.2018390005
Citation: ZHANG Xiaohong, CHEN Jingqing, CHEN Hui. Simulation on pulsed-MIG welding process of Al-Mg-Zn aluminum alloy by FEA based on hybrid heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 17-21. DOI: 10.12073/j.hjxb.2018390005

Simulation on pulsed-MIG welding process of Al-Mg-Zn aluminum alloy by FEA based on hybrid heat source model

More Information
  • Received Date: August 24, 2016
  • In this work, based on ABAQUS software, a hybrid heat source model was developed to simulate the multi-pass pulse MIG welding process of a 15 mm-thick Al-Mg-Zn alloy. Compared with double ellipsoid heat source, the coupled heat source could finely realize the weld pool fitting according to morphology of each pass, and apparently reduced the complexity of parameters calibration for heat source. By applying the heat source model and nonlinearly elastic boundary conditions, the calculated weldment morphology and residual distortion had a well agreement with welding experiments.
  • 张 刚, 黄健康, 石 玗, 等. 基于脉冲电流参数的铝合金脉冲MIG焊过程控制[J]. 焊接学报, 2013, 34(12): 59-62.Zhang Gang, Huang Jiankang, Shi Yu,et al. Pulsed current parameters based control aluminum alloy pulsed MIG welding process[J]. Transactions of the China Welding Institution, 2013, 34(12): 59-62[2] Praveen P, Yarlagadda P, Kang M J,et al. Advancements in pulse gas metal arc welding[J]. Journal of Materials Processing Technology, 2005, 164(5): 1113-1119.[3] 李红克, 史清宇, 赵海燕, 等.热量自适应搅拌摩擦焊热源模型[J]. 焊接学报, 2006, 27(11): 81-85.Li Hongke, Shi Qingyu, Zhao Haiyan,et al. Welding heat source model of friction stir heat adaptation[J]. Transactions of the China Welding Institution, 2006, 27(11): 81-85.[4] 李晓东, 李春广, 朱志民, 等. 铝合金薄板MIG焊焊接变形仿真预测的工程应用[J]. 焊接学报, 2014, 35(2): 104-108.Li Xiaodong, Li Chunguang, Zhu Zhimin,et al. Engineering application of simulation and prediction of welding deformation of aluminum alloy sheet MIG welding [J]. Transactions of the China Welding Institution, 2014, 35(2): 104-108.[5] Chen J, Wu C S, Chen M A. Improvement of welding heat source models for TIG-MIG hybrid welding process [J]. Journal of Manufacturing Processes, 2014, 16(4): 485-493.
  • Related Articles

    [1]JIANG Ye<sup>1</sup>, WANG Dong<sup>1</sup>, QIN Xiaoyang<sup>2</sup>, LIU Wensheng<sup>1</sup>, JIA Shaowei<sup>1</sup>. Ultrasonic phased array inspection on welded crack of austenitic dissimilar ateel with thin wall and small diameter tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 119-122. DOI: 10.12073/j.hjxb.2018390213
    [2]HU Yu, XUE Jiaxiang, JIN Li, DONG Changwen. Effect of process parameters on weld quality during double-pulsed gas metal arc welding of dissimilar stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 115-120. DOI: 10.12073/j.hjxb.2018390187
    [3]LI Yuanbo, LI Xiao, SHI Quanfu, LIU Jing, LI Kai. Differential analysis for temperature distribution diagnostics of arc current-carrying region with low disturbance electrostatic probe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 26-30. DOI: 10.12073/j.hjxb.20170506
    [4]LI Yuanbo, LU Tian, ZHU Liang, SUN Zhe. Electrostatic probe analysis of current-carrying region of sheet slanting tungsten electrode arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 22-26.
    [5]LI Yuanbo, ZHU Liang. Electrostatic probe analysis of current-carrying region in constricting TIG arc with insulating sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 55-58.
    [6]HU Wengang, GANG Tie. Recognition of weld defects based on multi-probe source data fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 45-48.
    [7]LI Yuanbo, ZHU Liang. Analysis of current-carrying region of TIG arc with low-disturbing electrostatic probe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (8): 69-72.
    [8]YAN Keng, FANG Yuan. Influence of processing parameters on performance of friction stir spot welding with re-filling probe hole[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 93-96.
    [9]HAO Guang-ping, DENG Zong-quan. Pose of ultrasonic phased array scanner in inspecting tuhbular joint welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 21-26,30.
    [10]SHAN Bao-hua, OU Jin-ping. Ultrasonic phased array inspection technology of offshore platform structure tubular joint welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 35-37,42.
  • Cited by

    Periodical cited type(11)

    1. 余志辉. 电热水器行业数字化焊接电源运用分析. 上海轻工业. 2025(01): 153-155 .
    2. 王振民,宋哲龙,迟鹏,廖海鹏,张芩. 类人机器人焊接技术研究现状与展望. 机电工程技术. 2025(04): 1-13 .
    3. 王振民,贾建军,胡健良,廖海鹏,吴健文,张芩. 局部干法水下快频脉冲MIG焊电源研制. 焊接学报. 2024(04): 13-19+129-130 . 本站查看
    4. 苏立虎. 脉冲气体保护焊引弧和收弧控制技术研究. 上海电气技术. 2024(02): 40-43 .
    5. 王振民,唐嘉健,潘晓浩,饶杰,林三宝,徐孟嘉. 全数字大功率交流脉冲埋弧焊接电源. 机械工程学报. 2023(02): 96-103 .
    6. 饶杰,郑和俊,严云发. AC/DC电源变换器电磁兼容设计. 电子技术与软件工程. 2023(07): 163-167 .
    7. 吉霖,刘纪周,郭彦兵,高东峰,张旺. 基于后级斩波可控短路过渡GMAW电源设计. 热加工工艺. 2023(19): 106-110 .
    8. 姚屏,许敏,林茜,黄韵怡,王晓军. 机器人双脉冲弧焊工艺模式对铝合金焊缝质量的影响. 广东技术师范大学学报. 2023(06): 1-7 .
    9. 饶杰,吴健文,江东航,唐嘉健,王振民. 基于SiC模块的脉冲变极性焊接电源研制. 焊接学报. 2021(07): 21-27+98-99 . 本站查看
    10. 吴健文,徐孟嘉,范文艳,陈浩宇,江东航,王振民. 钛合金快频脉冲柔性波形调制TIG焊接工艺. 机械工程学报. 2020(06): 102-109 .
    11. 胡永鹅,龙琼,韩兴科,何波,王尧,杨秀芳. 铝合金材料焊接方法研究进展. 贵州农机化. 2020(03): 15-19 .

    Other cited types(10)

Catalog

    Article views (776) PDF downloads (11) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return