Advanced Search
WANG Zhenmin, JIA Jianjun, HU Jianliang, LIAO Haipeng, WU Jianwen, ZHANG Qin. Research on local dry underwater fast-frequency pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 13-19. DOI: 10.12073/j.hjxb.20230620002
Citation: WANG Zhenmin, JIA Jianjun, HU Jianliang, LIAO Haipeng, WU Jianwen, ZHANG Qin. Research on local dry underwater fast-frequency pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 13-19. DOI: 10.12073/j.hjxb.20230620002

Research on local dry underwater fast-frequency pulsed MIG welding power supply

More Information
  • Received Date: June 19, 2023
  • Available Online: February 21, 2024
  • Aiming at the ultra-high dynamic characteristics and precise control requirements of welding power supply in the extremely complex underwater environment, the main circuit of fast-frequency pulsed welding power supply based on SiC module is designed, an all-digital control system is developed, and the local dry underwater fast-frequency pulsed MIG (LDU-FFPMIG) welding power supply is exploited. The welding power supply has a rated output current of 400 A, which can accurately output fast-frequency pulsed current waveforms with the fast-frequency frequency of 0~30 kHz and the fast-frequency current amplitude of 200 A. A new LDU-FFPMIG process is proposed, and the fast-frequency pulsed is applied to perform 304 stainless steel local dry underwater MIG welding, the influence of fast-frequency pulsed on local dry underwater pulsed MIG welding is revealed. The results show that the self-developed LDU-FFPMIG welding power supply achieves stable local dry underwater MIG welding and good weld formation. The introduction of fast-frequency pulsed current significantly improves arc energy density and arc stability, reduces the melting width (B), increases the penetration depth (H), reduces the weld forming coefficient (B/H) by about 30%, and refines the grain.

  • [1]
    Sehgal Anuj Kumar. An investigation of variable welding current on impact strength of metal inert gas welded specimen[J]. Mater Today-Proceedings, 2021, 37: 3679 − 3682. doi: 10.1016/j.matpr.2020.10.151
    [2]
    Wang Zhenmin, Pei Kai, Han Leigang, et al. Effect of pulse frequency on droplet transfer and weld formation in local dry underwater welding[J]. Journal of Manufacturing Processes, 2021, 68: 1726 − 1734. doi: 10.1016/j.jmapro.2021.06.065
    [3]
    Liao Haipeng, Zhang Wenxu, Xie Huimin, et al. Effects of welding speed on welding process stability, microstructure and mechanical performance of SUS304 welded by local dry underwater pulsed MIG[J]. Journal of Manufacturing Processes, 2023, 88: 84 − 96. doi: 10.1016/j.jmapro.2023.01.047
    [4]
    Liao Haipeng, Zhang Wenxu, Li Xuyan, et al. Numerical simulation and experimental verification of droplet transfer during local dry underwater MIG welding process of SUS304[J]. Journal of Materials Research and Technology, 2022, 21: 1960 − 1973. doi: 10.1016/j.jmrt.2022.10.040
    [5]
    Liao Haipeng, Zhang Wenxu, Li Xuyan, et al. Effect of pulse current on droplet transfer behavior and weld formation of 304 stainless steel in local dry underwater pulse MIG welding[J]. International Journal of Advanced Manufacturing Technology, 2022, 122(2): 869 − 879. doi: 10.1007/s00170-022-09938-y
    [6]
    高辉, 焦向东, 周灿丰, 等. 水下高压局部干式自动焊接试验装置控制系统[J]. 焊接学报, 2008, 29(10): 65 − 68. doi: 10.3321/j.issn:0253-360X.2008.10.017

    Gao Hui, Jiao Xiangdong, Zhou Canfeng, et al. Control system of underwater high-pressure local dry automatic welding testing apparatus[J]. Transactions of the China Welding Institution, 2008, 29(10): 65 − 68. doi: 10.3321/j.issn:0253-360X.2008.10.017
    [7]
    蒋力培, 王中辉, 焦向东, 等. 水下焊接高压空气环境下GTAW电弧特性[J]. 焊接学报, 2007, 28(6): 1 − 4. doi: 10.3321/j.issn:0253-360X.2007.06.001

    Jiang Lipei, Wang Zhonghui, Jiao Xiangdong, et al. Characteristics of GTAW arc in underwater welding under high-pressure air condition[J]. Transactions of the China Welding Institution, 2007, 28(6): 1 − 4. doi: 10.3321/j.issn:0253-360X.2007.06.001
    [8]
    Krishna Prasad S, Mathiazhagan A. Underwater eelding: A review paper[J]. Indian Welding Journal, 2021, 54(1): 56 − 63.
    [9]
    Wu Jianwen, Wang Zhenmin, Lin Sanbao, et al. Effect of fast-frequency pulsed waveforms on the microstructure and mechanical properties of Ti-6Al-4V alloy welded by FFP-TIG[J]. Journal of Materials Research and Technology, 2022, 20: 516 − 531. doi: 10.1016/j.jmrt.2022.07.126
    [10]
    吴健文, 徐孟嘉, 范文艳, 等. 钛合金快频脉冲柔性波形调制TIG焊接工艺[J]. 机械工程学报, 2020, 56(6): 102 − 109. doi: 10.3901/JME.2020.06.102

    Wu Jianwen, Xu Mengjia, Fan Wenyan, et al. Fast-frequency pulse flexible waveform modulation TIG welding process for titanium alloy[J]. Journal of Mechanical Engineering, 2020, 56(6): 102 − 109. doi: 10.3901/JME.2020.06.102
    [11]
    Kuang Xiaocong, Qi Bojin, Zheng Hao. Effect of pulse mode and frequency on microstructure and properties of 2219 aluminum alloy by ultrahigh-frequency pulse metal-inert gas welding[J]. Journal of Materials Research and Technology, 2022, 20: 3391 − 3407. doi: 10.1016/j.jmrt.2022.08.094
    [12]
    Chen Qihao, Tang Jianxing, Wang Jiayou, et al. Effect of alternating ultrasonic frequency electric signal on the distribution of pore in aluminum alloy weld[J]. China Welding, 2021, 30(1): 13 − 20.
    [13]
    钟启明, 谢芳祥, 王振民. 新型双脉冲 MIG 焊接电源[J]. 焊接学报, 2019, 40(7): 94 − 99. doi: 10.12073/j.hjxb.2019400188

    Zhong Qiming, Xie Fangxiang, Wang Zhenmin. Research of a novel double-pulsed MIG welding power supply[J]. Transactions of the China Welding Institution, 2019, 40(7): 94 − 99. doi: 10.12073/j.hjxb.2019400188
    [14]
    王振民, 汪倩, 王鹏飞, 等. 新一代WBG弧焊逆变电源[J]. 焊接学报, 2016, 37(7): 49 − 52.

    Wang Zhenmin, Wang Qian, Wang Pengfei, et al. A new generation WBG arc welding inverter[J]. Transactions of the China Welding Institution, 2016, 37(7): 49 − 52.
    [15]
    李滨. ISOP-FB高频焊接电源研究[D]. 北京: 北京工业大学, 2020.

    Li Bin. Research on ISOP-FB high frequency welding power source[D]. Beijing: Beijing University of Technology, 2020.
    [16]
    饶杰, 吴健文, 江东航, 等. 基于SiC模块的脉冲变极性焊接电源研制[J]. 焊接学报, 2021, 42(7): 21 − 27. doi: 10.12073/j.hjxb.20201211001

    Rao Jie, Wu Jianwen, Jiang Donghang, et al. Development of pulse variable polarity welding power source based on SiC modules[J]. Transactions of the China Welding Institution, 2021, 42(7): 21 − 27. doi: 10.12073/j.hjxb.20201211001
    [17]
    Ma Qiang, Luo Chuncheng, Liu Shixiong, et al. Investigation of arc stability, microstructure evolution and corrosion resistance in underwater wet FCAW of duplex stainless steel[J]. Journal of Materials Research and Technology, 2021, 15: 5482 − 5495. doi: 10.1016/j.jmrt.2021.11.023
  • Related Articles

    [1]WU Kupei, LI Shengping, ZHANG Xian-min. Probability-sorting based inspection method for chip type solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(6): 39-43.
    [2]YU Liang, CHEN Yuhua, HUANG Chunping, GE Junwei, KE Liming. Ultrasonic phased array inspection technology for defects in friction stir welded seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 21-24.
    [3]LU Minghui, CHENG Jun, SHAO Hongliang, SUN Minglei. Application of computes-aided ultrasonic phased array in inspection of weld in TKY tubular node[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 45-48.
    [4]XIE Hongwei, KUANG Yongcong, OUYANG Gaofei, ZHANG Xianmin. Solder joint inspection method regarding misalignment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 30-34.
    [5]LU Shenglin, Zhang Xianmin. Intelligent inspection of soldered joint based on artificial neuron network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 57-60.
    [6]FU Xibin, LIN Sanbao, YANG Chunli, FAN Chenglei, QIAN Xia. Inspection of fillet weld shape dimension based on laser vision sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 47-50.
    [7]ZHANG Xiao-yun, ZHANG Yan-song, CHEN Guan-long. On-line weld quality inspection based on weld indentation by us-ing servo gun[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 57-60.
    [8]HAO Guang-ping, DENG Zong-quan. Pose of ultrasonic phased array scanner in inspecting tuhbular joint welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 21-26,30.
    [9]Zhi-yuan, PEI Run, WANG Ling, LIU Zhi-lin. A Research on Automatic Ultrasonic Inspection System for Weld Flaw UU[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 71-74.
    [10]Xu Zhixiang, Huang Sijun, Lu Hong, Sun Qiudong. Computer quality inspection for X ray welding image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 1-6.

Catalog

    Article views (175) PDF downloads (44) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return