Advanced Search
CUI Bing1,2, PENG Yun2, PENG Mengdu2, JIANG Zhuojun2. Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 63-67. DOI: 10.12073/j.hjxb.20150617003
Citation: CUI Bing1,2, PENG Yun2, PENG Mengdu2, JIANG Zhuojun2. Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 63-67. DOI: 10.12073/j.hjxb.20150617003

Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel

More Information
  • Received Date: June 16, 2015
  • The present study focuses on the relationship between microstructure and toughness property in the coarse grain heat affected zone (CGHAZ) of Q890 high-performance steel. The result show that, with the heat input increasing microstructure changes from martensite to martensite and bainitic ferrite and then to bainitic ferrite and granular bainite. The Charpy impact test results show that impact energy as high as 83 J attained in the CGHAZ with 19.7 kJ/cm, which related to the contribution of prephase bainitic ferrite segment martensite and leading to maximum density of high angle boundaries, which can improve toughness. When the heat input is 34.1 and 44 kJ/cm, the impact energy reasons for the decline is due to catenulate distribution of embrittlement M-A constituents and local stress concentration, resulting in rapid crack initiation and propagation via the massive martensite–austenite (M-A) constituent.
  • 张元杰. TMCP890钢焊接热影响区组织与性能研究[D]. 昆明: 昆明理工大学, 2014.[2] 杨 莉. 焊接线能量对WEI-TEN80A钢焊接接头力学性能的影响[J]. 热加工工艺, 2005(3): 46-47. Yang Li. Influence of welding line energy on mechanical performance of WEI-TEN80A steel’s welding joints[J]. Hot Working Technology, 2005(3): 46-47.[3] 吴昌忠, 陈怀宁, 范闽宁, 等. 1 000 MPa级高强钢焊接热影响区组织和韧性[J]. 焊接学报, 2011, 32(5): 97-100. Wu Changzhong, Chen Huaining, Fan Minning,etal. Microstructure and toughness of HAZ in 1 000 MPa grade high strength steel joint[J]. Transactions of the China Institution, 2011, 32(5): 97-100.[4] Bing C, Yun P, Lin Z,etal. Effect of heat input on microstructure and toughness of coarse grained heat affected zone of Q890 steel[J]. ISIJ International, 2016, 56(1): 132-139.[5] 衣海龙, 麻庆申, 杜林秀, 等. 待温厚度与终轧温度对X80管线钢组织中马氏体/奥氏体岛的影响[J]. 机械工程学报, 2009, 33(6): 37-39. Yi Hailong, Ma Qingshen, Du Linxiu,etal. Influences of temperature holding thickness and finish rolling temperature on martensite/austenite islands in X80 pipeline steel[J]. Materials for Mechanical Engineering, 2009, 33(6): 37 -39.[6] Mstsuda F. Effect of M-A constituent on fracture behavior of 780 and 980MPa class HSLA steels subjected to weld HAZ thermal cycle[J]. Transactions of JWRI, 1994, 23(2): 231-238.[7] 赵 琳, 张旭东, 陈武柱. 800 MPa级低合金钢焊缝热影响区韧性的研究[J]. 金属学报, 2005, 41(4): 392-396. Zhao Lin, Zhang Xudong, Chen Wuzhu. Toughness of heat-affected zone of 800 MPa grade low alloy steel[J]. Acta Metallurgica Sinica, 2005, 41(4): 392-396.[8] 安同邦, 单际国, 魏金山, 等. 热输入对1 000 MPa级工程机械用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42-49. An Tongbang, Shan Jiguo, Wei Jinshan,etal. Effect of heat input on microstructure and performance of welded joint in 1 000 MPa grade steel for construction machinery[J]. Journal of Mechanical Engineering, 2014, 50(22): 42-49.[9] 安同邦, 田志凌, 单际国, 等. 后热温度对1 000 MPa级高强钢焊缝组织与性能的影响[J]. 机械工程学报, 2015, 51(4): 40-46. An Tongbang, Tian Zhiling, Shan Jiguo,etal. Effect of the temperature of post weld heat treatment on microstructure and performance of weld metal for 1 000 MPa grade high strength steel[J]. Journal of Mechanical Engineering, 2015, 51(4): 40-46.[10] Thompson A W, Knott J F. Micromechanisms of brittle fracture[J]. Metallurgical Transactions A, 1993, 24A(3): 523-534.[11] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: part Ⅰ. fractographic evidence[J]. Metallurgical and Materials Thansactions A, 1994, 25(3): 563-573.[12] 王爱华, 彭 云, 肖红军, 等. 690 MPa级HSLA钢焊缝金属的显微组织与冲击韧性[J]. 焊接学报, 2013, 34(4): 7-10. Wang Aihua, Peng Yun, Xiao Hongjun,etal. Microstructure and impact property of 690 MPa level HSLA steel weld[J]. Transactions of the China Institution, 2013, 34(4): 7-10.[13] 缪成亮, 尚成嘉, 王学敏, 等. 高NbX80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5): 541-546. Liao Chengliang, Shang Chengjia, Wang Xuemin,etal. Micro-structure and toughness of HAZ in X80 pipeline steel with high Nb content[J]. Acta Metallurgica Sinica, 2010, 46(5): 541-546.[14] Morito S, Saito H, Ogawa T,etal. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels[J]. ISIJ Internaitonal, 2005, 45(1): 91-94.[15] Jun H, Lin X D, Jian J W,etal. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel[J]. Materials Science & Engineering A, 2014, 590: 323-328.
  • Related Articles

    [1]YIN Chi, GUO Yonghuan, FAN Xiying, ZHU Zhiwei, SONG Haoxuan, ZHANG Liang. Multi-objective optimization of aluminum copper laser welding parameters based on BKA-GBRT and MOSPO[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 140-144. DOI: 10.12073/j.hjxb.20240721002
    [2]LI Jiahao, SHU Linsen, HENG Zhao, WU Han. Multi-objective optimization of laser cladding parameters based on PCA and RSM-DE algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 67-73. DOI: 10.12073/j.hjxb.20220310001
    [3]ZHOU Wenting, SI Yupeng, HE Hongzhou, WANG Rongjie. Design of reflow oven furnace temperature based on quantum multi-objective optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 85-91. DOI: 10.12073/j.hjxb.20210508001
    [4]HONG Bo, LIU Long, WANG Tao. Prediction in longeron automatic welding of generalized regression neural network by ameliorated fruit flies optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 73-76.
    [5]ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13.
    [6]GAO Xiangdong, LIU Yingying, XIAO Zhenlin, CHEN Xiaohui. Analysis of high-power disk laser welding status based on multi-sensor information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 31-34,88.
    [7]GUO Haibin, LI Guizhong. A double-characteristic fusion-control algorithm for resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 105-108.
    [8]SHU Fuhua. Friction welding technological parameter optimization based on LSSVM and AFSA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 104-108.
    [9]CAI Guorui, DU Dong, TIAN Yuan, HOU Runshi, GAO Zhiling. Defect detection of X-ray images of weld using optimized heuristic search based on image information fusion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 29-32.
    [10]CUI Xiaofang, MA Jun, ZHAO Haiyan, ZHAO Wenzhong, MENG Kai. Optimization of welding sequences of box-like structure based on a genetic algorithm method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 5-8.
  • Cited by

    Periodical cited type(2)

    1. 赵衍华,张粟泓,王非凡,郝云飞,宋建岭,孙世烜,王国庆. 搅拌摩擦焊接与加工技术进展. 航天制造技术. 2025(01): 1-25 .
    2. 李充,田亚林,齐振国,王崴,杨彦龙,王依敬. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能. 焊接学报. 2022(06): 102-107+119 . 本站查看

    Other cited types(1)

Catalog

    Article views (886) PDF downloads (711) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return