Advanced Search
CUI Bing1,2, PENG Yun2, PENG Mengdu2, JIANG Zhuojun2. Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 63-67. DOI: 10.12073/j.hjxb.20150617003
Citation: CUI Bing1,2, PENG Yun2, PENG Mengdu2, JIANG Zhuojun2. Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 63-67. DOI: 10.12073/j.hjxb.20150617003

Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel

More Information
  • Received Date: June 16, 2015
  • The present study focuses on the relationship between microstructure and toughness property in the coarse grain heat affected zone (CGHAZ) of Q890 high-performance steel. The result show that, with the heat input increasing microstructure changes from martensite to martensite and bainitic ferrite and then to bainitic ferrite and granular bainite. The Charpy impact test results show that impact energy as high as 83 J attained in the CGHAZ with 19.7 kJ/cm, which related to the contribution of prephase bainitic ferrite segment martensite and leading to maximum density of high angle boundaries, which can improve toughness. When the heat input is 34.1 and 44 kJ/cm, the impact energy reasons for the decline is due to catenulate distribution of embrittlement M-A constituents and local stress concentration, resulting in rapid crack initiation and propagation via the massive martensite–austenite (M-A) constituent.
  • 张元杰. TMCP890钢焊接热影响区组织与性能研究[D]. 昆明: 昆明理工大学, 2014.[2] 杨 莉. 焊接线能量对WEI-TEN80A钢焊接接头力学性能的影响[J]. 热加工工艺, 2005(3): 46-47. Yang Li. Influence of welding line energy on mechanical performance of WEI-TEN80A steel’s welding joints[J]. Hot Working Technology, 2005(3): 46-47.[3] 吴昌忠, 陈怀宁, 范闽宁, 等. 1 000 MPa级高强钢焊接热影响区组织和韧性[J]. 焊接学报, 2011, 32(5): 97-100. Wu Changzhong, Chen Huaining, Fan Minning,etal. Microstructure and toughness of HAZ in 1 000 MPa grade high strength steel joint[J]. Transactions of the China Institution, 2011, 32(5): 97-100.[4] Bing C, Yun P, Lin Z,etal. Effect of heat input on microstructure and toughness of coarse grained heat affected zone of Q890 steel[J]. ISIJ International, 2016, 56(1): 132-139.[5] 衣海龙, 麻庆申, 杜林秀, 等. 待温厚度与终轧温度对X80管线钢组织中马氏体/奥氏体岛的影响[J]. 机械工程学报, 2009, 33(6): 37-39. Yi Hailong, Ma Qingshen, Du Linxiu,etal. Influences of temperature holding thickness and finish rolling temperature on martensite/austenite islands in X80 pipeline steel[J]. Materials for Mechanical Engineering, 2009, 33(6): 37 -39.[6] Mstsuda F. Effect of M-A constituent on fracture behavior of 780 and 980MPa class HSLA steels subjected to weld HAZ thermal cycle[J]. Transactions of JWRI, 1994, 23(2): 231-238.[7] 赵 琳, 张旭东, 陈武柱. 800 MPa级低合金钢焊缝热影响区韧性的研究[J]. 金属学报, 2005, 41(4): 392-396. Zhao Lin, Zhang Xudong, Chen Wuzhu. Toughness of heat-affected zone of 800 MPa grade low alloy steel[J]. Acta Metallurgica Sinica, 2005, 41(4): 392-396.[8] 安同邦, 单际国, 魏金山, 等. 热输入对1 000 MPa级工程机械用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42-49. An Tongbang, Shan Jiguo, Wei Jinshan,etal. Effect of heat input on microstructure and performance of welded joint in 1 000 MPa grade steel for construction machinery[J]. Journal of Mechanical Engineering, 2014, 50(22): 42-49.[9] 安同邦, 田志凌, 单际国, 等. 后热温度对1 000 MPa级高强钢焊缝组织与性能的影响[J]. 机械工程学报, 2015, 51(4): 40-46. An Tongbang, Tian Zhiling, Shan Jiguo,etal. Effect of the temperature of post weld heat treatment on microstructure and performance of weld metal for 1 000 MPa grade high strength steel[J]. Journal of Mechanical Engineering, 2015, 51(4): 40-46.[10] Thompson A W, Knott J F. Micromechanisms of brittle fracture[J]. Metallurgical Transactions A, 1993, 24A(3): 523-534.[11] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: part Ⅰ. fractographic evidence[J]. Metallurgical and Materials Thansactions A, 1994, 25(3): 563-573.[12] 王爱华, 彭 云, 肖红军, 等. 690 MPa级HSLA钢焊缝金属的显微组织与冲击韧性[J]. 焊接学报, 2013, 34(4): 7-10. Wang Aihua, Peng Yun, Xiao Hongjun,etal. Microstructure and impact property of 690 MPa level HSLA steel weld[J]. Transactions of the China Institution, 2013, 34(4): 7-10.[13] 缪成亮, 尚成嘉, 王学敏, 等. 高NbX80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5): 541-546. Liao Chengliang, Shang Chengjia, Wang Xuemin,etal. Micro-structure and toughness of HAZ in X80 pipeline steel with high Nb content[J]. Acta Metallurgica Sinica, 2010, 46(5): 541-546.[14] Morito S, Saito H, Ogawa T,etal. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels[J]. ISIJ Internaitonal, 2005, 45(1): 91-94.[15] Jun H, Lin X D, Jian J W,etal. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel[J]. Materials Science & Engineering A, 2014, 590: 323-328.
  • Related Articles

    [1]YAN Han, ZHAO Di, QI Tongfu, LENG Xuesong, FU Kuijun, HU Fengya. Effect of element Nb on microstructures and impact toughness of CGHAZ in TiNbV micro-alloyed steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 33-37. DOI: 10.12073/j.hjxb.20200906001
    [2]WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001
    [3]CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003
    [4]LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96.
    [5]DU Bing, SUN Fenglian, XU Yujun, LI Xiaoyu, LÜ Xiaochun, QIN Jian. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 1-4.
    [6]HU Jie, JIANG Zhizhong, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, ZHANG Hua. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 67-71.
    [7]LIANG Guoli, YANG Shanwu, WU Huibin, LIU Xueli. Impact toughness of simulated CGHAZ with high heat input for adding trace Zr oil tank steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 85-88.
    [8]XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.
    [9]ZHANG Yingqiao, ZHANG Hanqian, LIU Weiming. Effects of M-A constituent on toughness of coarse grain heat-affected zone in HSLA steels for oil tanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 109-112.
    [10]Ma Jin. EFFECT OF TRACE BORON ON IMPACT TOUGHNESS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (3): 155-161.
  • Cited by

    Periodical cited type(5)

    1. 刘自刚,张建峰,钱雪娇,叶佳城,孙仲侃. 大熔覆速率TIG焊研究现状与展望. 热加工工艺. 2024(01): 12-16 .
    2. 王奕楷,庞世炫,王燮阳,黄增好,曹彪. 高频脉冲复合直流微TIG焊接电源及其电弧形态特征. 焊接. 2023(03): 54-59 .
    3. 俞雄军,苏斌. 双钨极氩弧焊技术的发展及其在核承压设备耐腐蚀层堆焊中的应用. 东方电气评论. 2022(04): 64-68 .
    4. 吴统立,杨嘉佳,王克鸿,郭顺,高琼. 高频复合双钨极氩弧焊电弧行为规律. 电焊机. 2019(05): 87-91 .
    5. 吴统立,王克鸿,冯曰海. 高频复合双钨极氩弧焊电源研制. 电焊机. 2019(06): 83-88 .

    Other cited types(7)

Catalog

    Article views (887) PDF downloads (711) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return