Advanced Search
ZHANG Timing, WANG Yong, ZHAO Weimin, WU Qian. Hydrogen embrittlement susceptibility of X80 steel substrate and HAZ in simulated coal gas environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 43-46. DOI: 10.12073/j.hjxb.20150123002
Citation: ZHANG Timing, WANG Yong, ZHAO Weimin, WU Qian. Hydrogen embrittlement susceptibility of X80 steel substrate and HAZ in simulated coal gas environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 43-46. DOI: 10.12073/j.hjxb.20150123002

Hydrogen embrittlement susceptibility of X80 steel substrate and HAZ in simulated coal gas environment

More Information
  • Received Date: January 27, 2015
  • Coal gas contains a certain amount of hydrogen gas, so hydrogen-induced failure becomes the potential safety problem of pipelines, especially in the heat-affected zone (HAZ) of welded joint. HAZ samples of X80 pipeline steel were experimentally prepared using a welding simulator. The hydrogen embrittlement susceptibility of X80 pipeline steel substrate and different sub-regions of HAZ were evaluated by tensile test under high pressure coal gas environment. The results show that the mechanical properties of X80 pipeline steel substrate and different sub-regions of HAZ slightly decreased under coal gas environment, and this means hydrogen gas has a negative effect on the steel performance. Coarse grained heat-affected zone (CGHAZ) had the highest hydrogen embrittlement susceptibility, since obvious grain growth occurred and high angle grain boundaries decreased in this region based on analysis with optical microscope (OM) and electron backscatter diffraction (EBSD). The hydrogen diffusion speed in CGHAZ and hydrogen concentration at crack tip would increase, comparing to steel substrate, and thus the crack arrest property decreased. Consequently, the fracture surface presented apparent brittle features.
  • 谢 飞, 王 丹, 吴 明, 等. 应变速率对X80管线钢在库尔勒土壤环境中应力腐蚀开裂的影响[J]. 焊接学报, 2015, 36(1): 55-58. Xie Fei, Wang Dan, Wu Ming, et al. Effects of strain on stress corrosion cracking of X80 pipeline steel in ku'erle soil environment[J]. Transactions of the China Welding Institution, 2015, 36(1): 55-58.
    Briottet L, Batisse R, Dinechin G, et al. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines[J]. International Journal of Hydrogen Energy, 2012, 37: 9423-9430.
    陈延清, 杜则裕, 许良红. X80管线钢焊接热影响区组织和性能分析[J]. 焊接学报, 2010, 31(5): 101-104. Chen Yanqing, Du Zeyu, Xu Lianghong. Microstructure and mechanical properties of heat affected zone for X80 pipeline steel[J]. Transactions of the China Welding Institution, 2010, 31(5): 101-104.
    胡美娟, 王 鹏, 韩新利, 等. X80级抗大变形管线钢焊接粗晶区的组织和性能[J]. 焊接学报, 2012, 33(9): 93-96. Hu Meijuan, Wang Peng, Han Xinli, et al. Microstructure and properties of coarse grain region for high-strength pipeline X80 steel[J]. Transactions of the China Welding Institution, 2012, 33(9): 93-96.
    刘 玉, 李 焰, 李 强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097. Liu Yu, Li Yan, Li Qiang. Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated dee sea environment[J]. Acta Metallurgica Sinica, 2013, 49(9): 1089-1097.
    Moro I, Briottet L, Lemoine P, et al. Hydrogen embrittlement susceptibility of a high strength steel X80[J]. Materials Science and Engineering A, 2010, 527: 7252-7260.
    缪成亮, 尚成嘉, 王学敏, 等. 高Nb X80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5): 541-546. Liao Chengliang, Shang Chengjia, Wang Xuemin, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content[J]. Acta Metallurgica Sinica, 2010, 46(5): 541-546.
    林吉忠, 刘淑华. 金属材料的断裂与疲劳[M]. 北京: 中国铁道出版社, 1989.
  • Related Articles

    [1]SHI Ye, LEI Lei, YAN Ming, SONG Chunyu. Quantitative analysis of fatigue service failure law of 5182 aluminium alloy clinched joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 75-81. DOI: 10.12073/j.hjxb.20231219005
    [2]WANG Hongyu, HUANG Jinlei, CHEN Sheng, ZHU Jian, MAO Jizhou. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 111-119. DOI: 10.12073/j.hjxb.20220519002
    [3]MIAO Yugang, LI Chunwang, ZHAO Huihui, ZOU Junpan, ZHANG Peng. Characteristic analysis of copper/steel composite joint bypass-current wire-heating PAW on additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 95-99. DOI: 10.12073/j.hjxb.2019400134
    [4]WAN Rui1,2, LUO Yi1,2, ZHU Liang1,2, XU Jie1,2. Analysis of the resistance characteristics of nugget nucleation in the resistance spot welding with TiO2 powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 71-74. DOI: 10.12073/j.hjxb.2018390071
    [5]LU Lin, SUN Jia, WANG Hongmei, WANG Liqiang. Quantitative analysis of solder powder particle based on morphology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 97-100.
    [6]GAO Liwen, XUE Jiaxiang, CHEN Hui, LIN Zhihui, LIANG Yongquan. Evaluation on CO2 arc welding stability based on quantitative analysis of class frequency distribution of short-circuit time[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 43-46.
    [7]SUN Lei, YUAN Jinping, ZHAO Junjun, LIANG Zhijie. Quantitative analysis on interaction between corrosion and wear of NiCrBSiMo laser cladded coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 105-108.
    [8]GAO Liwen, XUE Jiaxiang, CHEN Hui, ZHANG Xue, Wang Ruichao. Quantitative evaluation on metal transfer process stability of arc welding based on autocorrelation analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 29-32.
    [9]ZENG Huilin, DU Zeyu, HUANG Fuxiang. Analysis on key technologies for pipeline internal circumferential automatic welding machine with multi-torch[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 77-80.
    [10]KONG Liang, YU Hailiang, JIN Xin, WU Yixiong. Quantitative analysis method of geometrical precision quality on precision welding structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 85-88.
  • Cited by

    Periodical cited type(7)

    1. 张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 .
    2. 魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 .
    3. 刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 .
    4. 吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 .
    5. 马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 . 本站查看
    6. 王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 . 本站查看
    7. 陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 .

    Other cited types(2)

Catalog

    Article views (456) PDF downloads (175) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return