Citation: | LIU Kun, YAN Zhaoyang, CHEN Shujun, CHEN Xizhang. Research progress in heat source and path planning of directed energy deposition-arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 21-34. DOI: 10.12073/j.hjxb.20240720002 |
Directed energy deposition-arc (DED-Arc) technology has garnered significant attention in both scientific research and industrial equipment fields due to its exceptional characteristics. It shows immense application potential in equipment manufacturing sectors such as aerospace and weaponry. The heat source, a core component of DED-Arc, is used for melting metal wires. The stability and control precision of the heat source directly affect the melting quality of the metal wires, while the amount of heat input determines the forming efficiency. Path planning is another critical core technology, directly influencing the forming quality and properties of the components. This paper outlines the recent research progress in heat sources of DED-Arc, including multi-electrode coupled, actively constrained, and multi-energy field composite arcs, as well as advancements in path planning. Additionally, it provides prospects for future research directions.
[1] |
韩启飞, 符瑞, 胡锦龙, 等. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62 − 73. doi: 10.11868/j.issn.1001-4381.2021.000343
Han Qifei, Fu Rui, Hu Jinlong, et al. Research progress in wire arc additive manufacturing of aluminum alloys[J]. Journal of Materials Engineering, 2022, 50(4): 62 − 73. doi: 10.11868/j.issn.1001-4381.2021.000343
|
[2] |
Xu J, Gu X, Ding D, et al. A review of slicing methods for directed energy deposition based additive manufacturing[J]. Rapid Prototyping Journal, 2018, 24(6): 1012 − 1025. doi: 10.1108/RPJ-10-2017-0196
|
[3] |
Wu B, Qiu Z, Dong B, et al. Effects of synchronized magnetic arc oscillation on microstructure, texture, grain boundary and mechanical properties of wire arc additively manufactured ti6al4v alloy[J]. Additive Manufacturing, 2022, 54: 102723. doi: 10.1016/j.addma.2022.102723
|
[4] |
Ma Yan, Cuiuri Dominic, Shen Chen, et al. Effect of interpass temperature on In-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding[J]. Additive Manufacturing, 2015, 8: 71 − 77. doi: 10.1016/j.addma.2015.08.001
|
[5] |
Zhou Xiangman, Tian Qihua, Du Yixian, et al. Investigation of the effect of torch tilt and external magnetic field on arc during overlapping deposition of wire arc additive manufacturing[J]. Rapid Prototyping Journal, 2020, 27(1): 24 − 36.
|
[6] |
Tang Shangyong, Wang Guilan, Song Hao, et al. A novel method of bead modeling and control for wire and arc additive manufacturing[J]. Rapid Prototyping Journal, 2021, 27(2): 311 − 320. doi: 10.1108/RPJ-05-2020-0097
|
[7] |
Yu Xueqi, Bai Xingwang, Shi Xiqiao, et al. Microstructures and properties of wire and arc additively manufactured steel matrix composites with addition of wc by gravity-driven side powder feeding[J]. Journal of Manufacturing Processes, 2022, 81: 236 − 249. doi: 10.1016/j.jmapro.2022.07.004
|
[8] |
张金田, 王杏华, 王涛, 等. 电弧增材制造单道单层工艺特性研究[J]. 材料导报, 2020, 34(24): 24132 − 24137. doi: 10.11896/cldb.19110204
Zhang Jintian, Wang Xinghua, Wang Tao, et al. Study on the processing characteristics of single-bead and single-layer in the WAAM[J]. Materials Reports, 2020, 34(24): 24132 − 24137. doi: 10.11896/cldb.19110204
|
[9] |
杨海欧, 王健, 王冲, 等. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 材料导报, 2018, 32(12): 2028 − 2031,2046. doi: 10.11896/j.issn.1005-023X.2018.12.016
Yang Haiou, Wang Jian, Wang Chong, et al. Macrostructure evolution of TC4 titanium alloy fabricated by wire and arc additive manufacturing[J]. Materials Reports, 2018, 32(12): 2028 − 2031, 2046. doi: 10.11896/j.issn.1005-023X.2018.12.016
|
[10] |
林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展, 2015, 34(9): 684 − 688 + 658. doi: 10.7502/j.issn.1674-3962.2015.09.06
Lin Xin, Huang Weidong. High performance metal additive manufacturing technology applied in aviation field[J]. Materials China, 2015, 34(9): 684 − 688 + 658. doi: 10.7502/j.issn.1674-3962.2015.09.06
|
[11] |
Yang X, Liu J, Wang Z, et al. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process[J]. Materials Science and Engineering: A, 2020, 774: 138942. doi: 10.1016/j.msea.2020.138942
|
[12] |
Zhou Y, Lin X, Kang N, et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. Journal of Materials Science & Technology, 2020, 37: 143 − 153.
|
[13] |
赵昀, 卢振洋, 陈树君, 等. 薄壁结构冷金属过渡增材制造工艺优化[J]. 西安交通大学学报, 2019, 53(8): 82 − 89. doi: 10.7652/xjtuxb201908011
Zhao Yun, Lu Zhenyang, Chen Shujun, et al. Optimization of manufacturing process for thin-walled structures based on cold metal transfer[J]. Journal of Xi’an Jiaotong University, 2019, 53(8): 82 − 89. doi: 10.7652/xjtuxb201908011
|
[14] |
Li Fang, Chen Shujun, Shi Junbiao, et al. Evaluation and optimization of a hybrid manufacturing process combining wire arc additive manufacturing with milling for the fabrication of stiffened panels: 12[J]. Applied Sciences, 2017, 7(12): 1233. doi: 10.3390/app7121233
|
[15] |
Zhao Yun, Li Fang, Chen Shujun, et al. Unit block–based process planning strategy of waam for complex shell–shaped component[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9): 3915 − 3927.
|
[16] |
Xiong Jun, Zhang Guangjun. Adaptive control of deposited height in gmaw-based layer additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(4): 962 − 968. doi: 10.1016/j.jmatprotec.2013.11.014
|
[17] |
Chen Shujun, Zhang Suolai, Huang Ning, et al. Droplet transfer in arcing-wire gtaw[J]. Journal of Manufacturing Processes, 2016, 23: 149 − 156. doi: 10.1016/j.jmapro.2016.05.014
|
[18] |
Lin J J, Lü Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing[J]. Materials & Design, 2016, 102: 30 − 40.
|
[19] |
马驰, 刘永红, 纪仁杰, 等. 电弧增材制造综述: 技术流派与展望[J]. 电加工与模具, 2020(4): 369 − 374.
Ma Chi, Liu Yonghong, Ji Renjie, Li Changlong, et al. Review of wire and arc additive manufacturing: Technology genre and prospect[J]. Electromachining & Mould, 2020(4): 369 − 374.
|
[20] |
Zhao Yun, Li Fang, Chen Shujun, et al. Direct fabrication of inclined thin-walled parts by exploiting inherent overhanging capability of CMT process[J]. Rapid Prototyping Journal, 2019, 26(3): 499 − 508. doi: 10.1108/RPJ-03-2019-0081
|
[21] |
陈和, 唐君才, 魏占静, 等. Tri-Arc与Tandem双丝电弧焊焊接工艺特性的对比[J]. 电焊机, 2021, 51(10): 102 − 106,156. doi: 10.7512/j.issn.1001-2303.2021.10.17
Chen He, Tang Juncai, Wei Zhanjing, et al. Comparison of welding process characteristics between Tri-Arc and Tandem dual wire arc welding[J]. Electric Welding Machine, 2021, 51(10): 102 − 106,156. doi: 10.7512/j.issn.1001-2303.2021.10.17
|
[22] |
Hiroshi Arita, Tomokazu Morimoto, Shigeo Nagaoka, et al. Development of advanced 3-electrode mag high-speed horizontal fillet welding process[J]. Welding in the World, 2009, 53(5): 35 − 43.
|
[23] |
林航. 船用钢三丝高速GMAW焊焊接工艺研究[D]. 上海: 上海交通大学, 2009.
Lin Harrison. Research of triple-wire high speed GMAW welding technology on ship plates[D]. Shanghai: Shanghai Jiao Tong University, 2009.
|
[24] |
宋永伦. 高性能焊接电弧的研究与应用[J]. 电焊机, 2013, 43(3): 1 − 5. doi: 10.7512/j.issn.1001-2303.2013.03.01
Song Yonglun. Research and development of high performance welding arc[J]. Electric Welding Machine, 2013, 43(3): 1 − 5. doi: 10.7512/j.issn.1001-2303.2013.03.01
|
[25] |
杨涛, 张生虎, 高洪明, 等. TIG-MIG复合焊电弧特性机理分析[J]. 焊接学报, 2012, 33(7): 25 − 28,60.
Yang Tao, Zhang Shenghu, Gao Hongming, et al. Analysis of mechanism for TIG-MIG hybrid arc properties[J]. Transactions of the China Welding Institution, 2012, 33(7): 25 − 28,60.
|
[26] |
刘焜. 双丝电弧增材制造铜铝合金的组织与性能[D]. 温州: 温州大学, 2021.
Liu Kun. Microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire additive manufacturing[D]. Wenzhou : Wenzhou University, 2021.
|
[27] |
朱明. 双丝旁路耦合电弧高效GMAW过程稳定性与熔滴过渡行为的控制研究[D]. 兰州: 兰州理工大学, 2014.
Zhu Ming. The research on controlling of stability and metal transfer behavior inconsumable DE-GMAW process[D]. Lanzhou: Lanzhou University of Technology, 2014.
|
[28] |
耿正, 魏占静, 韩雪飞, 等. 高熔敷率低热输入的Tri-arc双丝电弧焊接方法[J]. 金属加工(热加工), 2014(22): 36 − 39,42.
Gen Zheng, Wei Zhanjing, Han Xuefei, et al. Tri-Arc double-wire arc welding method with high deposition rate and low heat input[J]. MW Metal Forming, 2014(22): 36 − 39,42.
|
[29] |
陈树君, 张亮, 门广强, 等. 多电极耦合电弧形态研究[J]. 北京工业大学学报, 2015, 41(11): 1705 − 1710. doi: 10.11936/bjutxb2015070054
Chen Shujun, Zhang Liang, Men Guangqiang, et al. Study on behavior of multi-electrode coupled arc[J]. Journal of Beijing University of Technology, 2015, 41(11): 1705 − 1710. doi: 10.11936/bjutxb2015070054
|
[30] |
董善文. 斜交耦合电弧焊电弧特性及熔滴过渡行为研究[D]. 北京: 北京工业大学, 2020.
Dong Shanwen. Study on arc characteristics and droplet transfer behavior of skew-coupling arc welding[D]. Beijing : Beijing University of Technology, 2020.
|
[31] |
Dong S, Jiang F, Xu B, et al. Influence of polarity arrangement of inter-wire arc on droplet transfer in cross-coupling arc welding[J]. Materials, 2019, 12(23): 3985. doi: 10.3390/ma12233985
|
[32] |
Lu Z, Dong S, Jiang F, et al. Analysis of electrical characteristics of inter-wire arc in cross-coupling arc[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 22 − 31. doi: 10.1186/s10033-019-0340-z
|
[33] |
卢振洋, 刘峰, 蒋凡, 等. 电弧热丝变极性等离子弧增材制造铝合金成型尺寸预测[J]. 稀有金属材料与工程, 2019, 48(2): 524 − 530. doi: 10.12442/j.issn.1002-185X.20180465
Lu Zhenyang, Liu Feng, Jiang Fan, et al. Forming size prediction of additive manufacturing Al alloy by arc-heated wire VPPA welding[J]. Rare Metal Materials and Engineering, 2019, 48(2): 524 − 530. doi: 10.12442/j.issn.1002-185X.20180465
|
[34] |
黄健康, 杨茂鸿, 李挺, 等. 旁路耦合微束等离子弧增材制造[J]. 上海交通大学学报, 2016, 50(12): 1906 − 1909,1914.
Huang Jiankang, Yang Maohong, Li Ting, et al. Additive manufacturing by double electrode micro-plasma arc welding[J]. Journal of Shanghai Jiao Tong University, 2016, 50(12): 1906 − 1909,1914.
|
[35] |
樊丁, 李楠, 黄健康, 等. 旁路耦合微束等离子弧增材制造自适应高度控制系统[J]. 焊接学报, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279
Fan Ding, Li Nan, Huang Jiankang, et al. Double electrode micro plasma are additive manufacturing control system based on adaptive height adjustment[J]. Transactions of the China Welding Institution, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279
|
[36] |
罗震, 张禹, 贾鹏. Ti-6Al-4V钛合金微束等离子弧堆焊增材制造工艺研究[J]. 焊接, 2016(4): 13 − 16. doi: 10.3969/j.issn.1001-1382.2016.04.004
Luo Zhen, Zhang Yu, Jia Peng. Additive manufacturing of Ti-6Al-4V titanium alloy parts based on micro-plasma arc surfacing[J]. Welding & Joining, 2016(4): 13 − 16. doi: 10.3969/j.issn.1001-1382.2016.04.004
|
[37] |
Luo Jinle, Chen Xizhang, Vladislav B Deev, et al. Powder plasma arc additive manufacturing of (AlTi)2x(CoCrNi)100–2x medium-entropy alloys: microstructure evolution and mechanical properties[J]. Journal of Alloys and Compounds, 2024, 970: 172474. doi: 10.1016/j.jallcom.2023.172474
|
[38] |
Wang Yanhu, Sergey Konovalov, Chen Xizhang, et al. Research on plasma arc additive manufacturing of inconel 625 Ni–Cu functionally graded materials[J]. Materials Science and Engineering: A, 2022, 853: 143796. doi: 10.1016/j.msea.2022.143796
|
[39] |
Liu Wenqiang, Jia Chuanbao, Guo Meng, et al. Compulsively constricted waam with arc plasma and droplets ejected from a narrow space[J]. Additive Manufacturing, 2019, 27: 109 − 117. doi: 10.1016/j.addma.2019.03.003
|
[40] |
Qi Zewu, Cong Baoqiang, Qi Bojin, et al. Properties of wire + arc additively manufactured 2024 aluminum alloy with different solution treatment temperature[J]. Materials Letters, 2018, 230: 275 − 278. doi: 10.1016/j.matlet.2018.07.144
|
[41] |
Qi Zewu, Qi Bojin, Cong Baoqiang, et al. Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components: as-deposited and post heat-treated[J]. Journal of Manufacturing Processes, 2019, 40: 27 − 36. doi: 10.1016/j.jmapro.2019.03.003
|
[42] |
Cao Qianhui, Qi Bojin, Zeng Caiyou, et al. Achieving equiaxed microstructure and isotropic mechanical properties of additively manufactured AZ31 magnesium alloy via ultrasonic frequency pulsed arc[J]. Journal of Alloys and Compounds, 2022, 909: 164742. doi: 10.1016/j.jallcom.2022.164742
|
[43] |
Wang Xiaowei, Yang Dongqing, Huang Yong, et al. Microstructure and mechanical properties of as-deposited and heat-treated 18Ni (350) maraging steel fabricated by gas metal arc-based wire and arc additive manufacturing[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 6972 − 6981. doi: 10.1007/s11665-021-06102-7
|
[44] |
陈树君, 贾亚洲, 肖珺, 等. 脉冲激光驱动的GMAW短路过渡行为控制[J]. 焊接学报, 2018, 39(9): 1 − 5.
Chen Shujun, Jia Yazhou, Xiao Jun, et al. Pulsed laser controlled short-circuiting metal transfer in GMAW[J]. Transactions of the China Welding Institution, 2018, 39(9): 1 − 5.
|
[45] |
王立伟, 陈树君, 肖珺, 等. 熔滴主动靶向的激光间接电弧复合增材制造技术初探[J]. 焊接学报, 2017, 38(3): 71 − 74.
Wang Liwei, Chen Shujun, Xiao Jun, et al. Droplet-targeting laser hybrid indirect are for additive manufacturing technology-A preliminary study[J]. Transactions of the China Welding Institution, 2017, 38(3): 71 − 74.
|
[46] |
Shen Q, Kong X, Chen X. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): microstructure and mechanical properties[J]. Journal of Materials Science & Technology, 2021, 74: 136 − 142.
|
[47] |
王立伟. 激光辅助交流双丝间接电弧熔滴过渡行为与机理[D]. 北京: 北京工业大学, 2017.
Wang Liwei. Behavior and mechanism of laser assisted metal transfer in alternating current inter-wire indirect arc[D]. Beijing: Beijing University of Technology, 2020.
|
[48] |
肖珺, 王立伟, 陈树君, 等. 工艺参数对交流双丝间接电弧弧长和熔滴尺寸的影响[J]. 焊接, 2016(4): 46 − 49. doi: 10.3969/j.issn.1001-1382.2016.04.011
Xiao Jun, Wang Liwei, Chen Shujun, et al. Effect of welding parameters on AC twin-wire indirect are length and droplet size[J]. Welding & Joining, 2016(4): 46 − 49. doi: 10.3969/j.issn.1001-1382.2016.04.011
|
[49] |
陈彦宾, 苗玉刚, 李俐群, 等. 铝合金激光-钨极氩弧双面焊的焊接特性[J]. 中国激光, 2007(12): 1716 − 1720. doi: 10.3321/j.issn:0258-7025.2007.12.023
Chen Yanbin, Miao Yugang, Li Liqun, et al. Characteristies of laser TIG double side welding for aluminum alloys[J]. Chinese Journal of Lasers, 2007(12): 1716 − 1720. doi: 10.3321/j.issn:0258-7025.2007.12.023
|
[50] |
雷正龙, 陈彦宾, 李颖, 等. 铝合金CO2激光-TIG电弧复合焊接试验研究[J]. 航天制造技术, 2012(4): 35 − 37.
Lei Zhenglong, Chen Yanbin, Li Ying, et al. Experimental study on CO2-laser-TIG arc hybrid welding of Al alloy[J]. Aerospace Manufacturing Technology, 2012(4): 35 − 37.
|
[51] |
孙清洁. 超声−TIG电弧复合焊接方法及电弧行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
Sun Qingjie. Research on ultrasonic-arc behaviors and ultrasonic assisted TIG welding method[D]. Harbin : Harbin Institute of Technology, 2010.
|
[52] |
范成磊, 陈琪昊, 林三宝, 等. 超声在电弧焊接中的应用[J]. 精密成形工程, 2018, 10(1): 57 − 66. doi: 10.3969/j.issn.1674-6457.2018.01.007
Fan Chenglei, Chen Qihao, Lin Sanbao, et al. Application of ultrasonic in arc welding[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 57 − 66. doi: 10.3969/j.issn.1674-6457.2018.01.007
|
[53] |
Chen C, Fan C, Lin S, et al. Influence of pulsed ultrasound on short transfer behaviors in gas metal arc welding[J]. Journal of Materials Processing Technology, 2019, 267: 376 − 383. doi: 10.1016/j.jmatprotec.2018.12.033
|
[54] |
Chen C, Fan C, Liu Z, et al. Microstructure evolutions and properties of Al–Cu alloy joint in the pulsed power ultrasonic-assisted GMAW[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1397 − 1406. doi: 10.1007/s40195-020-01066-4
|
[55] |
陈树君, 张晓亮, 华爱兵, 等. 旋转磁场作用下的MAG焊电弧运动特征[J]. 电焊机, 2009, 39(6): 1 − 4. doi: 10.3969/j.issn.1001-2303.2009.06.001
Chen Shujun, Zhang Xiaoliang, Hua Aibing, et al. Study on are movement characteristies of MAG welding in a rotating magnetic field[J]. Electrie Welding Machine, 2009, 39(6): 1 − 4. doi: 10.3969/j.issn.1001-2303.2009.06.001
|
[56] |
Wang Y, Chen X, Shen Q, et al. Effect of magnetic field on the microstructure and mechanical properties of inconel 625 superalloy fabricated by wire arc additive manufacturing[J]. Journal of Manufacturing Processes, 2021, 64: 10 − 19. doi: 10.1016/j.jmapro.2021.01.008
|
[57] |
王扬帆. CMT电弧增材制造Inconel 625合金组织和性能研究[D]. 温州: 温州大学, 2020.
Wang Yangfan. Research on Inconel 625 alloy microstructure and properties using wire arc additive manufacturing based on the cold metal transfer(CMT) [D]. Wenzhou: Wenzhou University, 2020.
|
[58] |
刘健, 贺智涛, 牛继承. 船用高强钢厚板窄间隙热丝TIG焊接工艺研究[J]. 材料开发与应用, 2018, 33(3): 10 − 15.
Liu Jian, He Zhitao, Niu Jicheng. Research on narrow gap hot wire TIG welding of thick plate of high strength steel for shipbuilding[J]. Development and Application of Materials, 2018, 33(3): 10 − 15.
|
[59] |
陈树君, 苑城玮, 蒋凡, 等. 电阻加热金属丝材熔滴过渡的产热机制与熔化行为研究[J]. 金属学报, 2018, 54(9): 1297 − 1310. doi: 10.11900/0412.1961.2018.00035
Chen Shujun, Yuan Chengwei, Jiang Fan, et al. Study on heat generation mechanism and melting behavior of droplet transition in resistive heating metal wires[J]. Acta Metallurgical Sinica, 2018, 54(9): 1297 − 1310. doi: 10.11900/0412.1961.2018.00035
|
[60] |
苑城玮, 陈树君, 蒋凡, 等. 电阻加热金属丝材塑性变形电−热−机械响应分析[J]. 焊接学报, 2020, 41(12): 1 − 6. doi: 10.12073/j.hjxb.20200921001
Yuan Chengwei, Chen Shujun, Jiang Fan, et al. Electro-thermal-mechanical response analysis of plastic deformation of resistance heating metal wire[J]. Transactions of the China Welding Institution, 2020, 41(12): 1 − 6. doi: 10.12073/j.hjxb.20200921001
|
[61] |
王猛. 增材制造直接分层和路径规划技术研究[J]. 机械工程与自动化, 2018(6): 34 − 35,38. doi: 10.3969/j.issn.1672-6413.2018.06.012
Wang Meng. Research on direct slicing and path planning technology of additive manufacturing[J]. Mechanical Engineering & Automation, 2018(6): 34 − 35,38. doi: 10.3969/j.issn.1672-6413.2018.06.012
|
[62] |
李冉. 电弧增材制造分层算法与路径规划方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
Li Ran. Research on slicing algorithm and path planning method of wire and arc additive manufacturing[D]. Harbin : Harbin Institute of Technology, 2018.
|
[63] |
卜星. 基于机器人的模具电弧增材再制造路径规划及工艺[D]. 南京: 南京航空航天大学, 2018.
Bu Xing. Path planning and process design of wire and arc additive remanufacturing using industrial robot for mould repairing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
|
[64] |
Shi Junbiao, Li Fang, Chen Shujun, et al. Effect of in-process active cooling on forming quality and efficiency of tandem gmaw–based additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5): 1349 − 1356.
|
[65] |
赵昀. CMT冷金属过渡铝合金增材制造研究[D]. 北京: 北京工业大学, 2017.
Zhao Yun. Investigation of additive manufacture of aluminum parts based on CMT[D]. Beijing: Beijing University of Technology, 2017.
|
[66] |
朱忠良, 赵凯, 郭立杰, 等. 大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J]. 电焊机, 2020, 50(1): 1 − 14. doi: 10.7512/j.issn.1001-2303.2020.01.01
Zhu Zhongliang, Zhao Kai, Guo Lijie, et al. Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J]. Electric Welding Machine, 2020, 50(1): 1 − 14. doi: 10.7512/j.issn.1001-2303.2020.01.01
|
[67] |
梁少兵, 王凯, 丁东红, 等. 电弧增材制造路径工艺规划的研究现状与发展[J]. 精密成形工程, 2020, 12(4): 86 − 93. doi: 10.3969/j.issn.1674-6457.2020.04.009
Liang Shaobing, Wang Kai, Ding Donghong, et al. Research status and development of wire arc additive manufacturing path planning[J]. Journal of Netshape Forming Engineering, 2020, 12(4): 86 − 93. doi: 10.3969/j.issn.1674-6457.2020.04.009
|
[68] |
侯文彬, 夏明栋, 徐金亭. 增材制造中复杂区域的分割填充扫描算法[J]. 计算机集成制造系统, 2017, 23(9): 1853 − 1859.
Hou Wenbin, Xia Mingdong, Xu Jinting. Region segmentation and scanning algorithm in additive manufacturing[J]. Computer Integrated Manufacturing Systems, 2017, 23(9): 1853 − 1859.
|
[69] |
王德鹏. 3D打印分层与路径规划算法的研究与应用[D]. 合肥: 合肥工业大学, 2019.
Wang Depeng. Research and application of 3D printing layering and path planning algorithms[D]. Hefei: Hefei University of Technology, 2019.
|
[70] |
王占礼, 晁艳艳, 胡艳娟, 等. 改进的Hilbert曲线在FDM路径规划中的应用[J]. 机械设计与制造, 2016(3): 186 − 188,192. doi: 10.3969/j.issn.1001-3997.2016.03.051
Wang Zhanli, Chao Yanyan, Hu Yanjuan, et al. Application of improved Hilbert curve in the path planning of FDM[J]. Machinery Design & Manufacture, 2016(3): 186 − 188,192. doi: 10.3969/j.issn.1001-3997.2016.03.051
|
[71] |
欧立松. 面向三维打印的几何模型后处理技术研究[D]. 南京: 南京航空航天大学, 2015.
Ou Lisong. Research on post-processing technology of geometric model for 3D printing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
|
[72] |
Zhao Yun, Jia Yazhou, Chen Shujun, et al. Process planning strategy for wire-arc additive manufacturing: thermal behavior considerations[J]. Additive Manufacturing, 2020, 32: 100935. doi: 10.1016/j.addma.2019.100935
|
[73] |
Shi Junbiao, Li Fang, Chen Shujun, et al. T-GMAW based novel multi-node trajectory planning for fabricating grid stiffened panels: an efficient production technology[J]. Journal of Cleaner Production, 2019, 238: 117919. doi: 10.1016/j.jclepro.2019.117919
|
[74] |
李鑫磊, 张广军. 电弧增材制造中空间曲面等距路径规划算法[J]. 焊接学报, 2021, 42(7): 14 − 20,98. doi: 10.12073/j.hjxb.20201126001
Li Xinlei, Zhang Guangjun. Research on space equidistant path planning algorithm of complex curved surface for are additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(7): 14 − 20,98. doi: 10.12073/j.hjxb.20201126001
|
[75] |
牛其华. 基于体素的电弧增材制造曲面分层及路径规划方法研究[D]. 武汉: 华中科技大学, 2019.
Niu Qihua. Research of curved layer and path planning method based on voxel for wire arc additive manufacturing[D]. Wuhan: Huazhong University of Science & Technology, 2019.
|
[1] | GAN Shiming, XU Yanwen, HAN Yongquan, ZHAI Zhiping. Mechanism analysis and model parameters estimation of welding residual stress measurement based on modal test method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 34-40. DOI: 10.12073/j.hjxb.20220928002 |
[2] | LV Xiaoqing, WANG Xu, XU Lianyong, JING Hongyang, HAN Yongdian. Multi-objective optimization of MAG process parameters based on ensemble models[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 6-11. DOI: 10.12073/j.hjxb.20190629001 |
[3] | WANG Ying, LÜ Xiaoqing, JING Hongyang. Stability of short-circuiting transfer process based on GMAW dynamic model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 21-25. |
[4] | CHEN Xiaofeng, LIN Fang, WEI Zhonghua, XUE Jiaxiang. Double-pulsed MIG expert database based on mathematical modeling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 37-40. |
[5] | NIU Yong, SONG Yonglun, ZENG Zhoumo. Resonance phenomenon of small current pulsed TIG arc and analysis of AC impedance features[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 13-16. |
[6] | HE Jianping, WU Yixiong, JIAO Fujie. Dynamic model of liquid bridge profile in short-circuit transfer of GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 5-8. |
[7] | MA Tiejun, ZHANG Yong, LI Jinglong, YANG Siqian. Control model and software flow of main circuit for 3-phase low frequency welder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 55-58. |
[8] | HE Jian-ping, HUA Xue-ming, WU Yi-xiong, JIAO Fu-jie. Dynamic model of GMAW system with short circuiting transfer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 77-80. |
[9] | DU Xian-chang, DENG Zhan-feng, DU Xu-chang, BAI Zhi-fan. Mathematical model of new LCL-type main circuit of resonant type soft-switching arc welding inverted power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 111-114,118. |
[10] | CHEN Tao, WANG Zhi-yong, XIAO Rong-shi, ZUO Tie-chuan. Mathmatical Model of Pulsed Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (2): 9-14. |
1. |
周立成,冯志军,谢广明,吴华锋,李泽华,胡大川. 水下搅拌摩擦焊对铝/铜接头组织与性能的影响. 精密成形工程. 2023(03): 97-104 .
![]() | |
2. |
张茗瑄,马志鹏,陈桂娟,夏法锋,于心泷. 电磁超声作用下Sn-9Zn钎料在SiC表面铺展分析. 焊接学报. 2022(02): 55-60+117 .
![]() | |
3. |
邓呈敏,程东海,张华,王非凡,刘德博. 焊丝成分对铝/铜激光熔钎焊接头组织和性能的影响. 焊接学报. 2022(01): 16-21+114 .
![]() | |
4. |
陈克选,杜茵茵,陈彦强. 交变磁控电源的设计与仿真. 电焊机. 2022(03): 93-98 .
![]() | |
5. |
于江,潘俊林,苗惺林,张洪涛,高建国,苏昭方. 铝/铜异种金属电阻热辅助超声波缝焊工艺特性. 焊接学报. 2022(07): 76-81+117-118 .
![]() |