Citation: | LV Xiaoqing, WANG Xu, XU Lianyong, JING Hongyang, HAN Yongdian. Multi-objective optimization of MAG process parameters based on ensemble models[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 6-11. DOI: 10.12073/j.hjxb.20190629001 |
范成磊, 姚庆泰, 谢伟峰, 等. 超声-MAG复合焊接的熔滴过渡行为[J]. 焊接学报, 2017, 38(11): 11 − 15. doi: 10.12073/j.hjxb.20151214004
Fan Chenglei, Yao Qingtai, Xie Weifeng, et al. Characteristics of droplet transfer during ultrasound-MAG hybrid welding[J]. Transactions of the China Welding Institution, 2017, 38(11): 11 − 15. doi: 10.12073/j.hjxb.20151214004
|
Kamble A G, Rao R V. Experimental investigation on the effects of process parameters of GMAW and transient thermal analysis of AISI321 steel[J]. Advances in Manufacturing, 2013, 1(4): 362 − 377. doi: 10.1007/s40436-013-0041-2
|
Eusebio J M, Jose A E, Valentin M, et al. Optimization of geometric parameters in a welded joint through response surface methodology[J]. Construction and Building Materials, 2017, 154: 105 − 114. doi: 10.1016/j.conbuildmat.2017.07.163
|
Choudhary A, Kumar M, Unune D R. Parametric modeling and optimization of novel water-cooled advanced submerged arc welding process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97: 927 − 938. doi: 10.1007/s00170-018-1944-7
|
赵大伟, 康与云, 易荣涛, 等. 基于试验设计与统计分析的双相钢激光焊工艺优化[J]. 焊接学报, 2018, 39(1): 65 − 69. doi: 10.12073/j.hjxb.2018390015
Zhao Dawei, Kang Yuyun, Yi Rongtao, et al. Research on process parameters optimization of laser welding for dual phase steel DP600[J]. Transactions of the China Welding Institution, 2018, 39(1): 65 − 69. doi: 10.12073/j.hjxb.2018390015
|
杨亚超, 全惠敏, 邓林峰, 等. 基于神经网络的焊机参数预测方法[J]. 焊接学报, 2018, 39(1): 32 − 36. doi: 10.12073/j.hjxb.2018390008
Yang Yachao, Quan Huimin, Deng Linfeng, et al. Prediction method of welding machine parameters based on neural network[J]. Transactions of the China Welding Institution, 2018, 39(1): 32 − 36. doi: 10.12073/j.hjxb.2018390008
|
Vimal K E K, Vinodh S, Raja A. Optimization of process parameters of SMAW process using NN-FGRA from the sustainability view point[J]. Journal of Intelligent Manufacturing, 2017, 28(6): 1459 − 1480. doi: 10.1007/s10845-015-1061-5
|
Palanivel R, Dinaharan I, Laubscher R F. Application of an artificial neural network model to predict the ultimate tensile strength of friction-welded titanium tubes[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41: 111. doi: 10.1007/s40430-019-1613-2
|
Ahmed A N, Noor C W M, Allawi M F, et al. RBFNN-based model for prediction of weld bead geometry in shielded metal arc welding (SMAW)[J]. Neural Computing and Applications, 2018, 29(3): 889 − 899. doi: 10.1007/s00521-016-2496-0
|
Bayo E, Gracia J. Stiffness modelling of 2D welded joints using metamodels based on mode shapes[J]. Journal of Constructional Steel Research, 2019, 156: 242 − 251. doi: 10.1016/j.jcsr.2019.02.017
|
1. |
卓文波,谭国笔,陈秋任,侯泽宏,王显会,韩维建,黄理. 基于代理模型和NSGA-Ⅱ的超高强钢电阻点焊工艺参数多目标优化. 焊接学报. 2024(04): 20-25+130 .
![]() | |
2. |
马晓阳,何亮,成应晋,王杏华,程彬,贺智涛. BP神经网络预测船用钢焊接接头力学性能研究. 金属制品. 2024(03): 59-63 .
![]() | |
3. |
姚东升,胡旻,李晓磊. 地铁纯铜接地网放热焊接工艺参数优化方法研究. 焊接技术. 2023(03): 70-74+114 .
![]() | |
4. |
代丽华,陈雷. 舰船建造工艺参数优化的数学模型构建. 舰船科学技术. 2022(04): 83-86 .
![]() | |
5. |
赵大伟,王元勋,梁东杰,Yuriy Bezgans. 基于功率信号动态特征的钛合金电阻点焊熔核直径预测. 焊接学报. 2022(01): 55-59+116-117 .
![]() | |
6. |
冯维,宋燕利,洪晴岚,苏建军,柳泽阳,李永清. 基于组合近似模型的商用车驾驶室正碰安全性优化. 武汉理工大学学报. 2020(10): 88-97 .
![]() |