Advanced Search
LV Xiaoqing, WANG Xu, XU Lianyong, JING Hongyang, HAN Yongdian. Multi-objective optimization of MAG process parameters based on ensemble models[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 6-11. DOI: 10.12073/j.hjxb.20190629001
Citation: LV Xiaoqing, WANG Xu, XU Lianyong, JING Hongyang, HAN Yongdian. Multi-objective optimization of MAG process parameters based on ensemble models[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 6-11. DOI: 10.12073/j.hjxb.20190629001

Multi-objective optimization of MAG process parameters based on ensemble models

More Information
  • Received Date: June 28, 2019
  • Available Online: July 12, 2020
  • Three-factor and three-level full factor bead-on plate and butting welding tests were carried out with welding voltage, welding speed and wire feed rate being taken as considerable process parameters. Based on the data of the tests, error back propagation neural network, radial basis function neural network and kriging model were established to predict weld reinforcement, the tensile strength and impact energy of the weld generated in the tests. The results of model prediction show that the models can predict the weld performance well, but there are no models that can predict the three kinds of weld performance at the same time, and the prediction of each model fluctuates greatly. In order to further improve the precision and stability of prediction, the three stand-alone models mentioned above were combined into ensemble models in the manner of linear weighting method. Then, the multi-objective optimization of process parameters was achieved by NSGA-II based on the ensemble models. Finally, the non-inferior solutions between the weld reinforcement, the tensile strength and impact energy of the joints are obtained and verified. It is of great significance to realize the overall optimization of weld comprehensive performance and the fine application of welding.
  • 范成磊, 姚庆泰, 谢伟峰, 等. 超声-MAG复合焊接的熔滴过渡行为[J]. 焊接学报, 2017, 38(11): 11 − 15. doi: 10.12073/j.hjxb.20151214004

    Fan Chenglei, Yao Qingtai, Xie Weifeng, et al. Characteristics of droplet transfer during ultrasound-MAG hybrid welding[J]. Transactions of the China Welding Institution, 2017, 38(11): 11 − 15. doi: 10.12073/j.hjxb.20151214004
    Kamble A G, Rao R V. Experimental investigation on the effects of process parameters of GMAW and transient thermal analysis of AISI321 steel[J]. Advances in Manufacturing, 2013, 1(4): 362 − 377. doi: 10.1007/s40436-013-0041-2
    Eusebio J M, Jose A E, Valentin M, et al. Optimization of geometric parameters in a welded joint through response surface methodology[J]. Construction and Building Materials, 2017, 154: 105 − 114. doi: 10.1016/j.conbuildmat.2017.07.163
    Choudhary A, Kumar M, Unune D R. Parametric modeling and optimization of novel water-cooled advanced submerged arc welding process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97: 927 − 938. doi: 10.1007/s00170-018-1944-7
    赵大伟, 康与云, 易荣涛, 等. 基于试验设计与统计分析的双相钢激光焊工艺优化[J]. 焊接学报, 2018, 39(1): 65 − 69. doi: 10.12073/j.hjxb.2018390015

    Zhao Dawei, Kang Yuyun, Yi Rongtao, et al. Research on process parameters optimization of laser welding for dual phase steel DP600[J]. Transactions of the China Welding Institution, 2018, 39(1): 65 − 69. doi: 10.12073/j.hjxb.2018390015
    杨亚超, 全惠敏, 邓林峰, 等. 基于神经网络的焊机参数预测方法[J]. 焊接学报, 2018, 39(1): 32 − 36. doi: 10.12073/j.hjxb.2018390008

    Yang Yachao, Quan Huimin, Deng Linfeng, et al. Prediction method of welding machine parameters based on neural network[J]. Transactions of the China Welding Institution, 2018, 39(1): 32 − 36. doi: 10.12073/j.hjxb.2018390008
    Vimal K E K, Vinodh S, Raja A. Optimization of process parameters of SMAW process using NN-FGRA from the sustainability view point[J]. Journal of Intelligent Manufacturing, 2017, 28(6): 1459 − 1480. doi: 10.1007/s10845-015-1061-5
    Palanivel R, Dinaharan I, Laubscher R F. Application of an artificial neural network model to predict the ultimate tensile strength of friction-welded titanium tubes[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41: 111. doi: 10.1007/s40430-019-1613-2
    Ahmed A N, Noor C W M, Allawi M F, et al. RBFNN-based model for prediction of weld bead geometry in shielded metal arc welding (SMAW)[J]. Neural Computing and Applications, 2018, 29(3): 889 − 899. doi: 10.1007/s00521-016-2496-0
    Bayo E, Gracia J. Stiffness modelling of 2D welded joints using metamodels based on mode shapes[J]. Journal of Constructional Steel Research, 2019, 156: 242 − 251. doi: 10.1016/j.jcsr.2019.02.017
  • Cited by

    Periodical cited type(6)

    1. 卓文波,谭国笔,陈秋任,侯泽宏,王显会,韩维建,黄理. 基于代理模型和NSGA-Ⅱ的超高强钢电阻点焊工艺参数多目标优化. 焊接学报. 2024(04): 20-25+130 . 本站查看
    2. 马晓阳,何亮,成应晋,王杏华,程彬,贺智涛. BP神经网络预测船用钢焊接接头力学性能研究. 金属制品. 2024(03): 59-63 .
    3. 姚东升,胡旻,李晓磊. 地铁纯铜接地网放热焊接工艺参数优化方法研究. 焊接技术. 2023(03): 70-74+114 .
    4. 代丽华,陈雷. 舰船建造工艺参数优化的数学模型构建. 舰船科学技术. 2022(04): 83-86 .
    5. 赵大伟,王元勋,梁东杰,Yuriy Bezgans. 基于功率信号动态特征的钛合金电阻点焊熔核直径预测. 焊接学报. 2022(01): 55-59+116-117 . 本站查看
    6. 冯维,宋燕利,洪晴岚,苏建军,柳泽阳,李永清. 基于组合近似模型的商用车驾驶室正碰安全性优化. 武汉理工大学学报. 2020(10): 88-97 .

    Other cited types(6)

Catalog

    Article views (437) PDF downloads (44) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return