Advanced Search
HAN Jiao, HAN Yongquan, HONG Haitao, WANG Xuelong. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 45-49. DOI: 10.12073/j.hjxb.20210702001
Citation: HAN Jiao, HAN Yongquan, HONG Haitao, WANG Xuelong. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 45-49. DOI: 10.12073/j.hjxb.20210702001

Arc behavior of plasma-MIG hybrid welding of aluminum alloy

More Information
  • Received Date: July 01, 2021
  • Accepted Date: January 25, 2022
  • Available Online: January 27, 2022
  • It is found that in the plasma-MIG hybrid welding of aluminum alloy, when the plasma arc welding current is 130 A and the MIG welding current is 180 A (base current is 95 A), the resistance of MIG arc near the plasma arc in the base current time is small, and the voltage of MIG arc in the hybrid welding is lower than that in the single MIG welding in the pulse base period, and the main ionization medium of the MIG arc biased towards the plasma arc is Ar. When the MIG welding current increases to 240 A (base current is 122 A), the above phenomenon disappears. Due to the thermal inertia of the welding arc, when the MIG arc is biased towards the plasma arc in the base current period, the MIG arc will still be biased towards the plasma arc in the pulse current rising stage and when the current has just reached the peak current, the MIG arc voltage in the hybrid welding is higher than that in the single MIG welding. When the MIG arc is biased towards plasma arc in hybrid welding, the stability of MIG arc decreases. With the increase of MIG welding current, the arc stability increases.
  • Holzer M, Hofmann K, Mann V, et al. Change of hot cracking susceptibility in welding of high strength aluminum alloy AA 7075[J]. Physics Procedia, 2016, 83: 463 − 471. doi: 10.1016/j.phpro.2016.08.048
    Ericsson M, R Sandström. Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG[J]. International Journal of Fatigue, 2003, 25(12): 1379 − 1387. doi: 10.1016/S0142-1123(03)00059-8
    Essers W G, Liefkens A C. Plasma-MIG welding developed by Philips[J]. Machinery and Production Engineering, 1972, 1(11): 632 − 633.
    Ton H. Physical properties of the plasma-MIG welding arc[J]. Journal of Physics D:Applied Physics, 1975, 8(8): 922 − 933. doi: 10.1088/0022-3727/8/8/006
    陈树君, 王旭平, 张亮, 等. 等离子-MIG复合焊接熔滴过渡及电弧耦合特性研究[J]. 焊接, 2014(2): 3 − 7.

    Chen Shujun, Wang Xuping, Zhang Liang, et al. Study on droplet transfer and arc coupling characteristics of plasma-MIG hybrid welding[J]. Welding & Joining, 2014(2): 3 − 7.
    Bai Y, Gao H M, Qiu L. Droplet transition for plasma-MIG welding on aluminum alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(12): 2234 − 2239. doi: 10.1016/S1003-6326(10)60634-6
    Hertel M U. Füssel, Schnick M. Numerical simulation of the plasma–MIG process—interactions of the arcs, droplet detachment and weld pool formation[J]. Welding in the World, 2014, 58(1): 85 − 92. doi: 10.1007/s40194-013-0095-6
    Ono K, Liu Z, Era T, et al. Development of a plasma MIG welding system for aluminum[J]. Welding International, 2009, 23(11): 805 − 809. doi: 10.1080/09507110902836945
    Cai D T, Han S G, Zheng S D, et al. Plasma-MIG hybrid welding process of 5083 marine aluminum alloy[J]. Materials Science Forum, 2016, 850: 519 − 525. doi: 10.4028/www.scientific.net/MSF.850.519
    Yang T, Xiong J, Chen H. Effect of process parameters on tensile strength in plasma-MIG hybrid welding for 2219 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12): 2413 − 2421. doi: 10.1007/s00170-015-7901-9
    Wang Y J, Wei B, Guo Y Y, et al. Microstructure and mechanical properties of the joint of 6061 aluminum alloy by plasma-MIG hybrid welding[J]. China Welding, 2017, 26(2): 58 − 64.
    Guo Y, Pan H, Ren L, et al. An investigation on plasma-MIG hybrid welding of 5083 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98: 1433 − 1440. doi: 10.1007/s00170-018-2206-4
    Hong H, Han Y, Du M, et al. Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5): 1 − 8.
    Han Y, Tong J, Hong H, et al. The influence of hybrid arc coupling mechanism on GMAW arc in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101: 1 − 6. doi: 10.1007/s00170-018-2906-9
    陈芙蓉, 刘成豪, 李男. 超声冲击时间对7A52铝合金VPPA-MIG焊接接头的影响[J]. 焊接学报, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003

    Chen Furong, Liu Chenghao, Li Nan. Effect of ultrasonic impact time on VPPA-MIG welded joint of 7A52 aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003
    洪海涛, 韩永全, 童嘉晖, 等. 铝合金VPPA-MIG复合焊接电弧形态及伏安特性[J]. 焊接学报, 2016, 37(9): 65 − 69.

    Hong Haitao, Han Yongquan, Tong Jiahui, et al. Aluminum alloy VPPA-MIG composite welding arc shape and volt – ampere characteristics[J]. Transactions of the China Welding Institution, 2016, 37(9): 65 − 69.
    Reis R P, Souza M D , Scotti A. Models to describe plasma jet, arc trajectory and arc blow formation in arc welding[J]. Welding in the World. 2011, 55 (3-4): 24-32.
  • Related Articles

    [1]GAN Shiming, XU Yanwen, HAN Yongquan, ZHAI Zhiping. Mechanism analysis and model parameters estimation of welding residual stress measurement based on modal test method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 34-40. DOI: 10.12073/j.hjxb.20220928002
    [2]LV Xiaoqing, WANG Xu, XU Lianyong, JING Hongyang, HAN Yongdian. Multi-objective optimization of MAG process parameters based on ensemble models[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 6-11. DOI: 10.12073/j.hjxb.20190629001
    [3]WANG Ying, LÜ Xiaoqing, JING Hongyang. Stability of short-circuiting transfer process based on GMAW dynamic model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 21-25.
    [4]CHEN Xiaofeng, LIN Fang, WEI Zhonghua, XUE Jiaxiang. Double-pulsed MIG expert database based on mathematical modeling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 37-40.
    [5]NIU Yong, SONG Yonglun, ZENG Zhoumo. Resonance phenomenon of small current pulsed TIG arc and analysis of AC impedance features[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 13-16.
    [6]HE Jianping, WU Yixiong, JIAO Fujie. Dynamic model of liquid bridge profile in short-circuit transfer of GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 5-8.
    [7]MA Tiejun, ZHANG Yong, LI Jinglong, YANG Siqian. Control model and software flow of main circuit for 3-phase low frequency welder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 55-58.
    [8]HE Jian-ping, HUA Xue-ming, WU Yi-xiong, JIAO Fu-jie. Dynamic model of GMAW system with short circuiting transfer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 77-80.
    [9]DU Xian-chang, DENG Zhan-feng, DU Xu-chang, BAI Zhi-fan. Mathematical model of new LCL-type main circuit of resonant type soft-switching arc welding inverted power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 111-114,118.
    [10]CHEN Tao, WANG Zhi-yong, XIAO Rong-shi, ZUO Tie-chuan. Mathmatical Model of Pulsed Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (2): 9-14.
  • Cited by

    Periodical cited type(5)

    1. 周立成,冯志军,谢广明,吴华锋,李泽华,胡大川. 水下搅拌摩擦焊对铝/铜接头组织与性能的影响. 精密成形工程. 2023(03): 97-104 .
    2. 张茗瑄,马志鹏,陈桂娟,夏法锋,于心泷. 电磁超声作用下Sn-9Zn钎料在SiC表面铺展分析. 焊接学报. 2022(02): 55-60+117 . 本站查看
    3. 邓呈敏,程东海,张华,王非凡,刘德博. 焊丝成分对铝/铜激光熔钎焊接头组织和性能的影响. 焊接学报. 2022(01): 16-21+114 . 本站查看
    4. 陈克选,杜茵茵,陈彦强. 交变磁控电源的设计与仿真. 电焊机. 2022(03): 93-98 .
    5. 于江,潘俊林,苗惺林,张洪涛,高建国,苏昭方. 铝/铜异种金属电阻热辅助超声波缝焊工艺特性. 焊接学报. 2022(07): 76-81+117-118 . 本站查看

    Other cited types(3)

Catalog

    Article views (304) PDF downloads (60) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return