Advanced Search
TIAN Zhigang, LI Xinmei, QIN Zhong, YANG Xianchen, LIU Weibin, ZHANG Peijun. Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 53-63. DOI: 10.12073/j.hjxb.20220305001
Citation: TIAN Zhigang, LI Xinmei, QIN Zhong, YANG Xianchen, LIU Weibin, ZHANG Peijun. Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 53-63. DOI: 10.12073/j.hjxb.20220305001

Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding

More Information
  • Received Date: March 04, 2022
  • Available Online: November 24, 2022
  • In order to investigate the effect of Si content on the microstructure and properties of CoCrFeNiSix (x=0.5, 1.0, 1.5) high-entropy alloy coating, the high-entropy alloy coating was prepared by laser cladding technology. The phase composition, microstructure, element distribution, hardness value, wear resistance and corrosion properties of the coating were characterized by X-ray diffraction, scanning electron microscopy (SEM), energy dispersive spectroscopy, microhardness tester, friction and wear tester, and electrochemical workstation. The results show that with the increase of Si content, the alloy phase changes from single-phase face-centered cubic structure to face-centered cubic structure, silicon compound (σ) phase structure, and finally form face-centered cubic structure, body-centered cubic structure and σ mixed structure. The microstructure of the coating mainly changes from columnar crystals to dendritic crystals and finally to cellular crystals. At the same time, the hardness of the coating also increases. When the Si content is 1.5, the average hardness of the coating reaches 619.04 HV0.2, which is about 2.67 times that of the substrate. The wear amount and friction coefficient of the coating decreased with the increase of Si content, and the wear resistance of the coating increased significantly. In 3.5%NaCl solution, the corrosion performance of the coating increases first and then decreases with the increase of Si content. When Si content is 1.0, the corrosion performance of the coating is optimal.
  • Yeh J W, Chen S K, Lin S J, et al. Microstructural control and properties optimization of high-entropy alloys[J]. Advanced Engineering Materials, 2004, 6: 299 − 303. doi: 10.1002/adem.200300567
    Chang Xuejiao, Zeng Mengqi, Liu Keli, et al. Phase engineering of high-entropy alloys[J]. Advanced Materials, doi: 10.1002/adma.201907226.
    张杨, 艾云龙, 陈卫华, 等. 基于相结构的高熵合金设计[J]. 特种铸造及有色合金, 2021, 41(1): 37 − 42. doi: 10.15980/j.tzzz.2021.01.007

    Zhang Yang, Ai Yunlong, Chen Weihua, et al. Design of high entropy alloy based on the phase structure[J]. Special Casting & Non-Ferrous Alloys, 2021, 41(1): 37 − 42. doi: 10.15980/j.tzzz.2021.01.007
    Tsai Minghung, Li Jianhong, Fan Anchen, et al. Incorrect predictions of simple solid solution high entropy alloys: cause and possible solution[J]. Scripta Materialia, 2017, 127: 6 − 9. doi: 10.1016/j.scriptamat.2016.08.024
    Torbati-Sarraf H, Mitra Shabani, Paul D, et al. The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi high entropy alloy at different temperatures[J]. Materials & Design, 2019, 184: 108170.
    Liu H, Sun S, Zhang T, et al. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding[J]. Surface and Coatings Technology, 2020, 405(10): 126522.
    Huang L, Wang X, Jia F, et al. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSix high entropy alloys[J]. Materials Letters, 2021, 282(12815): 128809.
    温晓灿, 张凡, 雷智锋, 等. 高熵合金中的第二相强韧化[J]. 中国材料进展, 2019, 38(3): 242 − 250. doi: 10.7502/j.issn.1674-3962.2019.03.06

    Wen Xiaocan, Zhang Fan, Lei Zhifeng, et al. Second phase strengthening in high-entropy alloys[J]. Progress in Materials China, 2019, 38(3): 242 − 250. doi: 10.7502/j.issn.1674-3962.2019.03.06
    牛利冲, 李杰, 赵思杰, 等. FeCoNiCrMn系高熵合金变形机制的研究进展[J]. 中国有色金属学报, 2022, 32(8): 2316 − 2326.

    Niu Lichong, Li Jie, Zhao Sijie, et al. Research progress on deformation mechanism of FeCoNiCrMn high entropy alloy system[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(8): 2316 − 2326.
    Gu Zhen, Xi Shengqi, Sun Chongfeng. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings[J]. Journal of Alloys and Compounds, 2020, 819: 152986 − 152995. doi: 10.1016/j.jallcom.2019.152986
    Liu Kui, Wang Zhenhua, Yin Zengbin, et al. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering[J]. Ceramics International, 2018, 44(15): 18711 − 18718. doi: 10.1016/j.ceramint.2018.07.100
    Fang Wei, Yu Haoyang, Chang Ruobin, et al. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration[J]. Materials Chemistry and Physics, 2019, 238: 121897 − 121903. doi: 10.1016/j.matchemphys.2019.121897
    Ma Minyu, Han Aihua, Zhang Zunjun, et al. The role of Si on microstructure and high-temperature oxidation of CoCr2FeNb0.5Ni high-entropy alloy coating[J]. Corrosion Science, 2021, 185: 109417.
    Chandrakar R, Kumar A, Chandraker S, et al. Microstructural and mechanical properties of AlCoCrCuFeNiSix (x = 0 and 0.9) high entropy alloys[J]. Vacuum:Technology Applications & Ion Physics:the International Journal & Abstracting Service for Vacuum Science & Technology, 2021, 184: 184 − 189.
    韩显柱, 杨义成, 张彦东, 等. 激光同轴送粉熔覆工艺特性研究[J]. 金属加工(热加工), 2021(8): 9 − 13.

    Han Xianzhu, Yang Yicheng, Zhang Yandong, et al. Research on forming characteristics of laser coaxial powder feeding cladding[J]. Metal Working (Hot Working), 2021(8): 9 − 13.
    Aghili S E, Shamanian M, Najafabadi R A, et al. Microstructure and oxidation behavior of NiCr-chromium carbides coating prepared by powder-fed laser cladding on titanium aluminide substrate[J]. Ceramics International, 2020, 46(2): 1668 − 1679.
    郝文俊, 孙荣禄, 牛伟, 等. 激光熔覆CoCrFeNiSix高熵合金涂层的组织及性能[J]. 表面技术, 2021, 50(5): 87 − 94.

    Hao Wenjun, Sun Ronglu, Niu Wei, et al. Microstructure and properties of CoCrFeNiSix high entropy alloy coatings by laser cladding[J]. Surface Technology, 2021, 50(5): 87 − 94.
    Tsai M H, Hao Y, Cheng G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy[J]. Intermetallics, 2013, 33: 81 − 86. doi: 10.1016/j.intermet.2012.09.022
    刘昊, 高强, 郜文鹏, 等. 激光熔覆CoCrFeNiNb(x)高熵合金涂层的高温摩擦磨损性能[J]. 摩擦学学报, 2022, 42(5): 966 − 977.

    Liu Hao, Gao Qiang, Gao Wenpeng, et al. Friction and wear properties of CoCrFeNiNb(x) high entropy alloy coating by laser cladding at high temperature[J]. Tribology Journal, 2022, 42(5): 966 − 977.
    刘昊, 高强, 满家祥, 等. 激光熔覆CoCrFeMnNiTix高熵合金涂层的微观组织及性能研究[J]. 中国激光, 2022, 49(8): 18 − 29.

    Liu Hao, Gao Qiang, Man Jiaxiang, et al. Microstructure and properties of CoCrFeMnNiTix High Entropy Alloy Coatings by laser cladding[J]. China Laser, 2022, 49(8): 18 − 29.
    董世知, 孟旭, 马壮等. WC和Al2O3对氩弧熔覆FeAlCoCrCuTi0.4高熵合金涂层组织和耐冲蚀性能影响[J]. 焊接学报, 2019, 40(7): 127 − 132. doi: 10.12073/j.hjxb.2019400194

    Dong Shizhi, Meng Xu, Ma Zhuang et al. Effect of WC and Al2O3 on microstructure and erosion resistance of FeAlCoCrCuTi0.4 High Entropy Alloy coated by argon arc cladding[J]. Transactions of the China Welding Institution, 2019, 40(7): 127 − 132. doi: 10.12073/j.hjxb.2019400194
    Liang M L, Wang C L, Liang C L, et al. Microstructure and sliding wear behavior of FeCoNiCr0.8Al0.2 high-entropy alloy for different durations[J]. International Journal of Refractory Metals and Hard Materials, 2021, 103: 105767.
    Kong D, Wang W, Zhang T, et al. Effect of superheating on microstructure and wear resistance of Al1.8CrCuFeNi2 high-entropy alloy[J]. Materials Letters, 2022, 311: 131613. doi: 10.1016/j.matlet.2021.131613
    Wu H, Zhang S, Wang Z Y, et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMo x high entropy alloy coating: the role of Mo[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105721 − 105731. doi: 10.1016/j.ijrmhm.2021.105721
    苏允海, 梁学伟, 邓越, 等. FeAlCuCrNiNbx系高熵合金堆焊层的组织及性能分析[J]. 焊接学报, 2020, 41(4): 38 − 43.

    Su Yunhai, Liang Xuewei, Deng Yue, et al. Microstructure and property analysis of FeAlCuCrNiNbx high entropy alloy surfacing layer[J]. Transactions of the China Welding Institution, 2020, 41(4): 38 − 43.
    Aliyu Ahmed, Srivastava Chandan. Phase constitution, surface chemistry and corrosion behavior of electrodeposited MnFeCoNiCu high entropy alloy-graphene oxide composite coatings[J]. Surface & Coatings Technology, 2022, 429(15): 127943 − 127955.
  • Related Articles

    [1]MA Qiang, CHEN Mingxuan, MENG Junsheng, LI Chengshuo, SHI Xiaoping, PENG Xin. Microstructure and wear resistance of TiB2/Ni composite coating on pure copper surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 90-96. DOI: 10.12073/j.hjxb.20210202002
    [2]BAO Yefeng, XIE Bingqi, SONG Qining, JIANG Yongfeng. Study on erosion resistance of FeCoCrNiB0.2Mox coatings cladded by laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 7-13. DOI: 10.12073/j.hjxb.20201027001
    [3]HAN Bin, ZHANG Mengke, CUI Gang, WANG Yong. Microstructure and properties of Ni based alloy composite coating by laser cladding-ion sulfurizing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 1-4,96.
    [4]TIAN Lihui, MAO Shuhua, LU Sheng, YAO Zengjian. Microstructure and wear-resistance of NiCrBSi coating sprayed-remelted by plasma process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 89-94,113.
    [5]DING Kunying, CHENG Taotao, WANG Zhiping. Corrosion resistance of different particle-density WC-10Co- 4Cr coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 93-96.
    [6]HAN Bin, LI Meiyan, WANG Yong. Characteristics of high-temperature erosion-resistance for laser cladding NiAl coating on high chromium cast steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 1-4.
    [7]XIE Xiang, BAO Yefeng, YANG Ke, YANG Yuyang. Corrosion resistance of overlay by electroslag cladding with stainless steel strip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 77-80.
    [8]ZHANG Xiaodong, DONG Shiyun, WANG Zhijian, YAN Shixing, XU Binshi, Li Qingfen. Microstructure and wear resistance of clad layer on laser remanufacturing metal pieces[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 75-78.
    [9]HE Dingyong, XU Jing, MA Ran, JIANG Jianmin, WANG Zhihui. Wear resistance properties of micron-WC reinforced Ni60 coating by high frequency induction cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 1-4.
    [10]YAN Yonggen, SI Songhua, ZHANG Hui, HE Yizhu. Microstructure and wear resistance of laser cladding Co+Ni/WC alloy composite coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 21-24.
  • Cited by

    Periodical cited type(4)

    1. 郑伟,路向琨. 压力采集滤波系统在铝合金电阻点焊中的研究及应用. 热加工工艺. 2024(15): 49-52+58 .
    2. 于鹏,蔡正标,赵明明,刘鹏,张文明. 基于焊接电信号频域特征的焊接过程稳定性评估. 焊接学报. 2023(04): 105-110+135-136 . 本站查看
    3. 赵大伟,王元勋,梁东杰,Yuriy Bezgans. 基于功率信号动态特征的钛合金电阻点焊熔核直径预测. 焊接学报. 2022(01): 55-59+116-117 . 本站查看
    4. 刘倩雯,张南峰,阮洁珊,叶广文,张艳喜,高向东. 电阻点焊质量检测技术研究现状. 精密成形工程. 2022(05): 83-93 .

    Other cited types(3)

Catalog

    Article views (477) PDF downloads (104) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return