Advanced Search
SUN Zhenbang, LIU Lele, TONG Jiahui, HAN Yongquan, CHEN Furong. Numerical analysis of MIG welding of aluminum alloy based on improved heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 111-116, 128. DOI: 10.12073/j.hjxb.20220325007
Citation: SUN Zhenbang, LIU Lele, TONG Jiahui, HAN Yongquan, CHEN Furong. Numerical analysis of MIG welding of aluminum alloy based on improved heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 111-116, 128. DOI: 10.12073/j.hjxb.20220325007

Numerical analysis of MIG welding of aluminum alloy based on improved heat source model

More Information
  • Received Date: March 24, 2022
  • Available Online: March 29, 2023
  • CMOS high-speed camera was used to detect and analyze the transition behavior of aluminum alloy MIG welding droplets and to determine the transition frequency and speed of MIG droplets. Under the premise of theoretical analysis of MIG welding heat source characteristics, heat action mode and weld seam morphology, a combined volumetric heat source distribution model applicable to MIG welding was proposed and developed from the macroscopic welding thermal process. The MIG arc was treated and described as a classical double ellipsoidal heat source model, and the droplet energy action mode was represented as a uniform spherical heat source model. At the same time, the droplet thermal and kinetic energy are considered and added to the uniform sphere heat source model to realize the effect of droplet on the impact action of the MIG welding pool. Based on the above heat source model, a finite element model of the MIG welding temperature field of aluminum alloy was established. The temperature field of thick plate aluminum alloy MIG welding was simulated numerically. The results show that the trend and morphology of the weld fusion line obtained by simulation are in good agreement with the actual welding results. It is proved that the developed heat source model considering droplet thermal and kinetic energy can accurately describe the finger penetration characteristics and heat transfer process of MIG welding.
  • Wang X W, Huang Y, Zhang Y M. Droplet transfer model for laser-enhanced GMAW[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64: 207 − 217. doi: 10.1007/s00170-012-4014-6
    Bajpei T, Chelladurai H, Ansari M Z. Mitigation of residual stresses and distortions in thin aluminium alloy GMAW plates using different heat sink models[J]. Journal of Manufacturing Processes, 2006, 22: 199 − 210.
    Chen S J, Zhang R Y, Jiang, et al. A novel method for testing the electrical property of arc column in plasma arc welding[J]. Welding in the World, 2018, 62: 637 − 645. doi: 10.1007/s40194-018-0561-2
    Meng X, Qin G, Su Y. Numerical simulation of large spot laser + MIG arc brazing–fusion welding of Al alloy to galvanized steel[J]. Journal of Materials Processing Technology, 2015, 222: 307 − 314. doi: 10.1016/j.jmatprotec.2015.03.020
    李俐群, 何平, 宫建锋. 铝合金激光-MIG复合焊熔滴对匙孔作用的模拟[J]. 焊接学报, 2022, 43(8): 1 − 7. doi: 10.12073/j.hjxb.20220304002

    Li Liqun, He Ping, Gong Jianfeng. Simulation analysis of droplet action on keyhole during laser-MIG composite welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(8): 1 − 7. doi: 10.12073/j.hjxb.20220304002
    Sun Z B, Han Y Q, Du M H, et al. An improved simulation of temperature field in VPPA-GMAW of Al-Cu-Mg alloy[J]. Journal of Materials Processing Technology, 2019, 263: 366 − 373. doi: 10.1016/j.jmatprotec.2018.08.017
    Pan J J, Yang L J, Hu S S, et al. Numerical analysis of keyhole formation and collapse in variable polarity plasma arc welding[J]. International Journal of Heat and Mass Transfer, 2017, 109: 1218 − 1228. doi: 10.1016/j.ijheatmasstransfer.2016.12.089
    武传松, 孟祥萌, 陈姬, 等. 熔焊热过程与熔池行为数值模拟的研究进展[J]. 机械工程学报, 2018, 54(2): 1 − 11. doi: 10.3901/JME.2018.02.001

    Wu Chuansong, Meng Xiangmeng, Chen Ji, et al. Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding[J]. Journal of Mechanical Engineering, 2018, 54(2): 1 − 11. doi: 10.3901/JME.2018.02.001
    Lu Y, Zhu S, Zhao Z, et al. Numerical simulation of residual stresses in aluminum alloy welded joints[J]. Journal of Manufacturing Processes, 2020, 50: 380 − 393. doi: 10.1016/j.jmapro.2019.12.056
    杨帆, 陈芙蓉. A-UIT处理对7075铝合金焊接应力影响的数值模[J]. 焊接学报, 2022, 42(12): 91 − 96.

    Yang Fan, Chen Furong. Numerical simulation of effect of A-UIT treatment on welding stress of 7075 aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 42(12): 91 − 96.
    Baharnezhad S, Golhin A P. In-situ measurement and finite element simulation of thermo-mechanical properties of AA6063 aluminum alloy for MIG weldment[J]. Materials Physics and Mechanics, 2017, 32(2): 222 − 236.
    Azar A S, As S K, Akselsen O M. Determination of welding heat source parameters from actual bead shape[J]. Computational Materials Science, 2012, 54: 176 − 182. doi: 10.1016/j.commatsci.2011.10.025
    Mandal A, Parmar R S. Numerical modeling of pulse MIG welding[J]. ISIJ International, 2007, 47(10): 1485 − 1490. doi: 10.2355/isijinternational.47.1485
    秦国梁, 耿培皓, 陈永, 等. 铝/钢异种金属MIG电弧熔-钎焊接界面应力演变数值分析[J]. 机械工程学报, 2021, 57(2): 87 − 96. doi: 10.3901/JME.2021.02.087

    Qin Guoliang, Geng Peihao, Chen Yong, et al. Numerical analysis of stress evolution in MIG arc brazing-fusion welding of Al alloy to galvanized steel plate[J]. Journal of Mechanical Engineering, 2021, 57(2): 87 − 96. doi: 10.3901/JME.2021.02.087
    张晓鸿, 陈静青, 陈辉. 基于复合热源模型的Al-Mg-Zn铝合金脉冲MIG焊接模拟[J]. 焊接学报, 2018, 39(1): 17 − 21.

    Zhang Xiaohong, Chen Jingqing, Chen Hui. Simulation on pulsed-MIG welding process of Al-Mg-Zn aluminum alloy by FEA based on hybrid heat source model[J]. Transactions of the China Welding Institution, 2018, 39(1): 17 − 21.
    Park H, Rhee S. Analysis of weld geometry considering the transferring droplets in gas metal arc welding[J]. JSME International Journal Series C, 2001, 44(3): 856 − 862.
    Qin G L, Su Y H, Meng X M, et al. Numerical simulation on MIG arc brazing-fusion welding of aluminum alloy to galvanized steel plate[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78: 1917 − 1925. doi: 10.1007/s00170-014-6529-5
    Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15: 299 − 305.
  • Related Articles

    [1]ZHOU Yaju, YIN Shengming, XIA Yongzhong, YI Guoqiang, XUE Lihong, YAN Youwei. Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 18-26. DOI: 10.12073/j.hjxb.20221011001
    [2]WANG Lei, XU Xuezong, WANG Kehong, HUANG Yong, PENG Yong, YANG Dongqing. Microstructures and mechanical properties of fiber laser beam welded 7A52 alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 28-31, 37. DOI: 10.12073/j.hjxb.20200518001
    [3]ZHANG Jianchao1, QIAO Junnan1, WU Shikai1, LIAO Hongbin2, WANG Xiaoyu2. Microstructure and mechanical properties of fiber laser welded joints of reduced activation ferritic/martensitic CLF-1 steel heavy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109
    [4]YANG Jianguo, CHEN Shuangjian, HUANG Nan, FANG Kun, YUAN Shijian, LIU Gang. Factors affecting deformation induced martensitic transformation of SUS304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 89-92.
    [5]ZHOU Yefei, HAN Chao, LIU Ligang, YANG Yulin, YANG Qingxiang. Simulation of tangential process of stress field after hard-face-welding during martensite transformation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 73-76.
    [6]JIANG Zhizhong, HUANG Jihua, HU Jie, CHEN Shuhai. Microstructure and mechanical properties of laser welded joints of CLAM steel used for fusion reactor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 5-8.
    [7]DING Yanjun, TONG Zheng, LI Jinfu, LIN Yulong. Experimental analysis of explosive welding of NiTi alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 109-112.
    [8]ZHANG Weihua, QIU Xiaoming, SUN Daqian, ZHAO Xihua. Microstructure and mechanical properties of CO2 laser-welded joint of ZL109 aluminum silicon alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 45-48.
    [9]LI Deyuan, ZHANG Hongbing, HAN Hailing, ZHANG Zhongli. Rapid manufacture method of steel-base mould based on arc spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 9-12,16.
    [10]Wang Yucheng, Yu Jie, Li Yan, Li Weidong, Wang Jianguang. Martensitic Transformation and Microstructure in Fusion Zone of Dissimilar Steel Welded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 147-152.
  • Cited by

    Periodical cited type(2)

    1. 郭政伟,龙伟民,王博,祁婷,李宁波. 焊接残余应力调控技术的研究与应用进展. 材料导报. 2023(02): 148-154 .
    2. 成志强,胡聪,段金伟,吕志伟,杨涛. B型套筒角焊缝力学性能模拟实验. 西南石油大学学报(自然科学版). 2021(06): 111-118 .

    Other cited types(5)

Catalog

    Article views (273) PDF downloads (62) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return