Advanced Search
SUN Zhenbang, LIU Lele, TONG Jiahui, HAN Yongquan, CHEN Furong. Numerical analysis of MIG welding of aluminum alloy based on improved heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 111-116, 128. DOI: 10.12073/j.hjxb.20220325007
Citation: SUN Zhenbang, LIU Lele, TONG Jiahui, HAN Yongquan, CHEN Furong. Numerical analysis of MIG welding of aluminum alloy based on improved heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 111-116, 128. DOI: 10.12073/j.hjxb.20220325007

Numerical analysis of MIG welding of aluminum alloy based on improved heat source model

More Information
  • Received Date: March 24, 2022
  • Available Online: March 29, 2023
  • CMOS high-speed camera was used to detect and analyze the transition behavior of aluminum alloy MIG welding droplets and to determine the transition frequency and speed of MIG droplets. Under the premise of theoretical analysis of MIG welding heat source characteristics, heat action mode and weld seam morphology, a combined volumetric heat source distribution model applicable to MIG welding was proposed and developed from the macroscopic welding thermal process. The MIG arc was treated and described as a classical double ellipsoidal heat source model, and the droplet energy action mode was represented as a uniform spherical heat source model. At the same time, the droplet thermal and kinetic energy are considered and added to the uniform sphere heat source model to realize the effect of droplet on the impact action of the MIG welding pool. Based on the above heat source model, a finite element model of the MIG welding temperature field of aluminum alloy was established. The temperature field of thick plate aluminum alloy MIG welding was simulated numerically. The results show that the trend and morphology of the weld fusion line obtained by simulation are in good agreement with the actual welding results. It is proved that the developed heat source model considering droplet thermal and kinetic energy can accurately describe the finger penetration characteristics and heat transfer process of MIG welding.
  • Wang X W, Huang Y, Zhang Y M. Droplet transfer model for laser-enhanced GMAW[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64: 207 − 217. doi: 10.1007/s00170-012-4014-6
    Bajpei T, Chelladurai H, Ansari M Z. Mitigation of residual stresses and distortions in thin aluminium alloy GMAW plates using different heat sink models[J]. Journal of Manufacturing Processes, 2006, 22: 199 − 210.
    Chen S J, Zhang R Y, Jiang, et al. A novel method for testing the electrical property of arc column in plasma arc welding[J]. Welding in the World, 2018, 62: 637 − 645. doi: 10.1007/s40194-018-0561-2
    Meng X, Qin G, Su Y. Numerical simulation of large spot laser + MIG arc brazing–fusion welding of Al alloy to galvanized steel[J]. Journal of Materials Processing Technology, 2015, 222: 307 − 314. doi: 10.1016/j.jmatprotec.2015.03.020
    李俐群, 何平, 宫建锋. 铝合金激光-MIG复合焊熔滴对匙孔作用的模拟[J]. 焊接学报, 2022, 43(8): 1 − 7. doi: 10.12073/j.hjxb.20220304002

    Li Liqun, He Ping, Gong Jianfeng. Simulation analysis of droplet action on keyhole during laser-MIG composite welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(8): 1 − 7. doi: 10.12073/j.hjxb.20220304002
    Sun Z B, Han Y Q, Du M H, et al. An improved simulation of temperature field in VPPA-GMAW of Al-Cu-Mg alloy[J]. Journal of Materials Processing Technology, 2019, 263: 366 − 373. doi: 10.1016/j.jmatprotec.2018.08.017
    Pan J J, Yang L J, Hu S S, et al. Numerical analysis of keyhole formation and collapse in variable polarity plasma arc welding[J]. International Journal of Heat and Mass Transfer, 2017, 109: 1218 − 1228. doi: 10.1016/j.ijheatmasstransfer.2016.12.089
    武传松, 孟祥萌, 陈姬, 等. 熔焊热过程与熔池行为数值模拟的研究进展[J]. 机械工程学报, 2018, 54(2): 1 − 11. doi: 10.3901/JME.2018.02.001

    Wu Chuansong, Meng Xiangmeng, Chen Ji, et al. Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding[J]. Journal of Mechanical Engineering, 2018, 54(2): 1 − 11. doi: 10.3901/JME.2018.02.001
    Lu Y, Zhu S, Zhao Z, et al. Numerical simulation of residual stresses in aluminum alloy welded joints[J]. Journal of Manufacturing Processes, 2020, 50: 380 − 393. doi: 10.1016/j.jmapro.2019.12.056
    杨帆, 陈芙蓉. A-UIT处理对7075铝合金焊接应力影响的数值模[J]. 焊接学报, 2022, 42(12): 91 − 96.

    Yang Fan, Chen Furong. Numerical simulation of effect of A-UIT treatment on welding stress of 7075 aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 42(12): 91 − 96.
    Baharnezhad S, Golhin A P. In-situ measurement and finite element simulation of thermo-mechanical properties of AA6063 aluminum alloy for MIG weldment[J]. Materials Physics and Mechanics, 2017, 32(2): 222 − 236.
    Azar A S, As S K, Akselsen O M. Determination of welding heat source parameters from actual bead shape[J]. Computational Materials Science, 2012, 54: 176 − 182. doi: 10.1016/j.commatsci.2011.10.025
    Mandal A, Parmar R S. Numerical modeling of pulse MIG welding[J]. ISIJ International, 2007, 47(10): 1485 − 1490. doi: 10.2355/isijinternational.47.1485
    秦国梁, 耿培皓, 陈永, 等. 铝/钢异种金属MIG电弧熔-钎焊接界面应力演变数值分析[J]. 机械工程学报, 2021, 57(2): 87 − 96. doi: 10.3901/JME.2021.02.087

    Qin Guoliang, Geng Peihao, Chen Yong, et al. Numerical analysis of stress evolution in MIG arc brazing-fusion welding of Al alloy to galvanized steel plate[J]. Journal of Mechanical Engineering, 2021, 57(2): 87 − 96. doi: 10.3901/JME.2021.02.087
    张晓鸿, 陈静青, 陈辉. 基于复合热源模型的Al-Mg-Zn铝合金脉冲MIG焊接模拟[J]. 焊接学报, 2018, 39(1): 17 − 21.

    Zhang Xiaohong, Chen Jingqing, Chen Hui. Simulation on pulsed-MIG welding process of Al-Mg-Zn aluminum alloy by FEA based on hybrid heat source model[J]. Transactions of the China Welding Institution, 2018, 39(1): 17 − 21.
    Park H, Rhee S. Analysis of weld geometry considering the transferring droplets in gas metal arc welding[J]. JSME International Journal Series C, 2001, 44(3): 856 − 862.
    Qin G L, Su Y H, Meng X M, et al. Numerical simulation on MIG arc brazing-fusion welding of aluminum alloy to galvanized steel plate[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78: 1917 − 1925. doi: 10.1007/s00170-014-6529-5
    Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15: 299 − 305.
  • Related Articles

    [1]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [2]ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26.
    [3]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [4]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [5]XIONG Zhijun, LI Yongqiang, ZHAO Xihua, LI Min, ZHANG Weihua. Numerical simulation of temperature field in deep penetration laser welding under hot and press condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 41-44.
    [6]LI Hong-ke, SHI Qing-yu, ZHAO Hai-yan, LI Ting. Auto-adapting heat source model for numerical analysis of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 81-85.
    [7]JIANG You-qing, GU Lei, LIU Jian-hua. Temperature field numerical simulation of YAG-MIG hybrid welding process for thick aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 104-107.
    [8]WANG Xi-chang, WU Bing, ZUO Cong-jin, LIU Fang-jun. New heat source model for numerical simulation of electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 81-84.
    [9]MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.
  • Cited by

    Periodical cited type(3)

    1. 张小强,云泽,蒋庆梅,龙迅,李岩,曹鹏昊. X80M管道全自动焊环焊缝热影响区冷却时间预测模型. 油气储运. 2025(04): 411-419 .
    2. 武少杰,曲皇屹,程方杰. 基于变速GTAW焊接温度场解析模型的熔深预测研究. 天津大学学报(自然科学与工程技术版). 2024(01): 64-72 .
    3. 范文学. 有限元分析技术对焊接接头疲劳特性的影响. 焊接技术. 2024(12): 28-32+145 .

    Other cited types(1)

Catalog

    Article views (276) PDF downloads (62) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return