Advanced Search
GONG Miao, DAI Shijie, WANG Zhiping, WANG Liwen. Research on optimal heat input for blade repair of aero compressor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 39-47. DOI: 10.12073/j.hjxb.20200602001
Citation: GONG Miao, DAI Shijie, WANG Zhiping, WANG Liwen. Research on optimal heat input for blade repair of aero compressor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 39-47. DOI: 10.12073/j.hjxb.20200602001

Research on optimal heat input for blade repair of aero compressor

More Information
  • Received Date: June 01, 2020
  • Available Online: October 21, 2020
  • A heat transfer model for MPAW additive manufacturing repair of compressor blades was established. Firstly, the heat input range was calculated by analyzing the thermal properties of the alloy, and the temperature distribution of molten pool under different heat input was obtained. After that, the mathematical model of the additive manufacturing height and wire feeding speed was established, and the height under different wire feeding speed was solved. Through the numerical analysis of temperature distribution of weld cross-section, the heat input range was further reduced and the experimental parameters were obtained. Finally, with numerical analysis and experimental comparison, the evolution law of microstructure and heat input rate of the alloy repair zone was revealed, and the optimal heat input and welding parameters were obtained. The experimental results are in good agreement with the theoretical model, which verifies the effectiveness of the theoretical method. The results show that the optimal heat input rate can be achieved by using the welding parameters obtained, and the better additive manufacturing morphology and repair effect can be achieved.
  • 张冬梅, 崔海超, 杨尚磊, 等. Inconel 718激光焊接接头组织与热影响区裂纹研究[J]. 材料导报, 2016, 30(8): 96 − 99.

    Zhang Dongmei, Cui Haichao, Yang Shanglei, et al. Microstructures and microfissuring in the HAZ of Inconel 718 welds by laser welding[J]. Materials Reports, 2016, 30(8): 96 − 99.
    Benoit A, Jobez S, Paillard P, et al. Study of Inconel 718 weldability using MIG CMT process[J]. Science and Technology of Welding and Joining, 2011, 16(6): 477 − 482. doi: 10.1179/1362171811Y.0000000031
    Ramaswamy V, Swann P R, West D R F. Observation on intermetallic compound and carbide precipitation in two commercial nickel-base superalloys[J]. Journal of the Less-Common Metals, 1972, 27(1): 17 − 26. doi: 10.1016/0022-5088(72)90098-7
    王凯博, 吕耀辉, 刘玉欣, 等. 热输入对脉冲等离子弧增材制造Inconel 718合金组织与性能的影响[J]. 材料导报, 2017, 31(14): 100 − 104. doi: 10.11896/j.issn.1005-023X.2017.014.021

    Wang Kaibo, Lü Yaohui, Liu Yuxin, et al. Influence of heat input on microstructure and mechanical properties of pulse plasma arc additive manufactured Inconel 718 alloy[J]. Material Reports, 2017, 31(14): 100 − 104. doi: 10.11896/j.issn.1005-023X.2017.014.021
    张亮, 吴文恒, 卢林, 等. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29 − 35.

    Zhang Liang, Wu Wenheng, Lu Lin, et al. Effect of heat In parameters on temperature field in Inconel 718 alloy during selecctive laser melting[J]. Journal of Materials Engineering, 2018, 46(7): 29 − 35.
    Barbosaa L H S, Modenesia P J, Godefroidb L B, et al. Fatigue crack growth rates on the weld metal of high heat input submerged arc welding[J]. International Journal of Fatigue, 2019, 119: 43 − 51. doi: 10.1016/j.ijfatigue.2018.09.020
    Dai Hong, Xia Xiwei, Fang Naiwen, et al. Effect of the heat input on microstructure and properties of submerged arc welded joint of 08Cr19MnNi3Cu2N stainless steel[J]. China Welding, 2019, 28(3): 48 − 53.
    Essam Ahmed, Ramy Ahmed, AEL-Nikhaily, et al. Effect of heat input and filler metals on weld strength of gas tungsten arc welding of AISI 316 weldments[J]. China Welding, 2020, 29(1): 8 − 16.
    金礼, 徐敏, 薛家祥, 等. 热输入对铝合金双脉冲MIG焊接头性能的影响[J]. 焊接学报, 2018, 39(1): 89 − 92.

    Jin Li, Xu Min, Xue Jiaxiang, et al. Effect of line energy on properties of aluminum alloy joints in double pulsed MIG welding[J]. Transactions of the China Welding Institution, 2018, 39(1): 89 − 92.
    Ye Xin, Hua Xueming, Wang Min, et al. Controlling hot cracking in Ni-based Inconel 718 superalloy cast sheets during tungsten inert gas welding[J]. Journal of Materials Processing Technology, 2015, 222: 381 − 390. doi: 10.1016/j.jmatprotec.2015.03.031
    叶欣, 华学明, 吴毅雄, 等. 718合金TIG焊热影响区组织变化[J]. 焊接学报, 2015, 36(8): 97 − 100.

    Ye Xin, Hua Xueming, Wu Yixiong, et al. Microstructure evolution of HAZ of TIG welded Ni-based 718 superalloy[J]. Transactions of the China Welding Institution, 2015, 36(8): 97 − 100.
    Wang L, Yao Y, Dong J, et al. Eeffect of cooling rates on segregation and density variation in the mushy zone during solidification of superalloy Inconel 718[J]. Chemical Engineering Communications, 2010, 197(12): 1571 − 1585. doi: 10.1080/00986445.2010.493101
    Manikandan S G K, Sivakumar D, Prasad Rao K, et al. Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone[J]. Journal of Materials Processing Technology, 2014, 214(2): 358 − 364. doi: 10.1016/j.jmatprotec.2013.09.006
    Manikandan S G K, Sivakumar D, Kamaraj M, et al. Laves phase control in Inconel718 weldments[J]. Materials Science Forum, 2012, 710: 614 − 619. doi: 10.4028/www.scientific.net/MSF.710.614
    Manikandan S G K, Sivakumar D, Prasad Rao K, et al. Microstructural characterization of liquid nitrogen cooled alloy 718 fusion zone[J]. Journal of Materials Processing Technology, 2014, 12: 3141 − 3149.
    Rahimi A, Shamanian M, Rahimi A, et al. A Comparative study on direct and pulsed current micro-plasma arc welding of alloy Ti–6Al–4V[J]. Transactions of the Indian Institute of Metals, 2018, 71(12): 1 − 8.
    Jianping H, Chen H, Fujie J, et al. Research on digitalization of high frequency microplasma arc welding machine with small welding current[J]. Rare metal materials and engineering, 2011, 40(4): 79 − 83.
    龚淼, 戴士杰, 贾鹏, 等. 航空发动机叶片MPAW修复传热建模及冷却方法研究[J]. 焊接学报, 2019, 40(7): 24 − 30.

    Gong Miao, Dai Shijie, Jia Peng, et al. Heat transfer modeling and cooling method for aeroengine blade MPAW Repair[J]. Transactions of the China Welding Institution, 2019, 40(7): 24 − 30.
    Dai Shijie, Gong Miao, Li Wenwang, et al. Research on cooling method in surfacing repair process of aero compressor blade[J]. Mathematical Problems in Engineering, 2020(02): 1 − 19.
  • Related Articles

    [1]WANG Ruichao, ZHU Guochong, LI Huijun, LI Runhua. Numerical simulation of heat and mass transfer and molten pool behavior of aluminum alloy by CMT and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 92-100, 108. DOI: 10.12073/j.hjxb.20231122002
    [2]CHEN Zhanglan, XIONG Yunfeng. Numerical analysis on deformation of welded construction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 77-80.
    [3]ZHANG Fangfang, FANG Zhaohong. Heat conduction models and analysis for HAZ of plate welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 109-112.
    [4]ZHANG Xueqiu, YANG Jianguo, LIU Xuesong, FANG Hongyuan, QU Shen. Numerical simulation of welding distortion of blisk on aero-engine by controlling heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 37-40.
    [5]LI Zhining, DU Dong, CHANG Baohua, WANG Li. Numerical simulation on flow and heat transfer in weld pool of laser-plasma hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 37-40.
    [6]WANG Da-yong, FENG Ji-cai, WANG Pan-feng. Numerical model of heat input from rotational tool during friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (3): 25-28,32.
    [7]ZHU Zi-xin, LIU Yan, XU Bin-shi, Ma Shi-ning. Numerical analysis of heat transfer behavior of atomized droplets during high velocity arc spraying:Ⅱ Influence of process parameters on heat transfer behavior of droplets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 5-8,12.
    [8]ZHU Zi-xin, LIU Yang, XU Bin-shi, MA Shi-ning. Numerical analysis of heat transfer behavior of atomized droplets during high velocity arc spraying:I.mathematical model and vari-ations of heat transfer parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 1-4,8.
    [9]LEI Yong-ping, HAN Feng-juan, Xia Zhi-dong, FENG Ji-cai. Numerical analysis of residual stress in ceramics/metal brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 33-36,41.
    [10]Wu Chuansong, Chen Dinghua, Wu Lin. NUMERICAL SIMULATION OF THE FLUID FLOW AND HEAT TRANSFER IN TIG WELDING MOLTEN POOLS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (4): 263-269.

Catalog

    Article views (530) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return