Advanced Search
ZHU Zi-xin, LIU Yang, XU Bin-shi, MA Shi-ning. Numerical analysis of heat transfer behavior of atomized droplets during high velocity arc spraying:I.mathematical model and vari-ations of heat transfer parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 1-4,8.
Citation: ZHU Zi-xin, LIU Yang, XU Bin-shi, MA Shi-ning. Numerical analysis of heat transfer behavior of atomized droplets during high velocity arc spraying:I.mathematical model and vari-ations of heat transfer parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 1-4,8.

Numerical analysis of heat transfer behavior of atomized droplets during high velocity arc spraying:I.mathematical model and vari-ations of heat transfer parameters

More Information
  • Received Date: April 22, 2003
  • The hish velocity arc spraying(HVAS) process relates to very complicated heat transfer behavior.And the microstructure with rapid solidification of the coating is mainly determined by the heat transfer behavior of the droplets during atomization.The heat transfer model of atomized droplets during HVAS was developed based on the theory of fluid mechanics,solidification,and Newton cooling.And the model was solved by a numerical method using a Fe-A1 alloy to analyze the variations of the heat transfer parameters with spraying distance.Experiments were carried out to measure the changes of the average temperature of atomized droplets using Spray Watch-2ion-line thermal spraying monitor system.A good agreement between the numerical and experimental results was ob-served.The results showed that the heat transfer parameters such as convective heat transfer coefficient,temperature,solid fraction and cooling rate changed in regularity.The initial cooling rate of Fe-A1 alloy droplet was about 2.5 x 106K/s,reflecting the features of rapid solidification process.
  • Related Articles

    [1]WANG Zhipeng, ZHU Mingliang, XUAN Fuzhen. High cycle fatigue property and lifetime modeling of CrMoV and NiCrMoV dissimilar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 67-73. DOI: 10.12073/j.hjxb.20231205004
    [2]ZHOU Shaoze, GUO Shuo, CHEN Bingzhi, ZHANG Jun, ZHAO Wenzhong. Master S-N curve fitting and life prediction method for very high cycle fatigue of welded structures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 76-82. DOI: 10.12073/j.hjxb.20211116002
    [3]ZHAN Rui, WANG Dongpo, DENG Caiyan, CUI Lei, GUAN Wei, LIANG Hang. Effect of ultrasonic peening on fatigue performance of aluminum alloy FSW joints with root defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 7-12. DOI: 10.12073/j.hjxb.20201220001
    [4]HE Bolin, YE Bin, DENG Haipeng, LI Li, WEI Kang. Very high cycle fatigue properties of SMA490BW steel welded joints for train bogie[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 31-37. DOI: 10.12073/j.hjxb.2019400037
    [5]DENG Caiyan, YIN Tinghui, GONG Baoming. Properties of very-high-cycle fatigue of TC11 titanium alloy EBW welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 23-26. DOI: 10.12073/j.hjxb.2018390088
    [6]FU Yuming, ZHAO Huayang, DU Wenlian, LI Yanfang, ZHENG Lijuan. Fatigue life and strengthening research of welded joints with hole defects by using electromagnetic heating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 31-34. DOI: 10.12073/j.hjxb.20170407
    [7]GAO Weixin, HU Yuheng, MU Xiangyang, WANG Zhi. Study on sub-arc X-ray welding image defect segmentation algorithm and defect model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 37-41.
    [8]LIU Xi. Fatigue reliability evaluation for welding construction containing welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 89-92,96.
    [9]WANG Ya-rong, ZHANG Zhong-dian. Defects in joint for resistance spot welding of magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 9-12.
    [10]Lü Baotong, Zheng Xiulin. Fatigue life prediction for butt welds of 30CrMnSiNi2A steel containing welding delect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 241-247.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (149) PDF downloads (76) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return