Advanced Search
LIU Lipeng, WANG Wei, DONG Peixin, WEI Yanhong. Mechanical properties predication system for welded joints based on neural network optimized by genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 105-108.
Citation: LIU Lipeng, WANG Wei, DONG Peixin, WEI Yanhong. Mechanical properties predication system for welded joints based on neural network optimized by genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 105-108.

Mechanical properties predication system for welded joints based on neural network optimized by genetic algorithm

More Information
  • Received Date: December 29, 2009
  • In this paper, A large number of production line data was collectd and collated on welding technology and mechanical properties of welded joints. A relevant database was established based on these data, then BP neural networks optimized by genetic algorithm was used to mock up these mechanical properties of welding joint for prediction. By which mechanical properties of tensile strength, yield strength and elongation of carbon steel, low alloy high strength steel and stainless steel can be predicted. The results show that the material composition and welding technology as the main parameters of joints can be determined by this system and staisfied prediction accuracy can be obtained as well.
  • Related Articles

    [1]LI Chengwen, JI Haibiao, YAN Zhaohui, LIU Zhihong, MA Jianguo, WANG Rui, WU Jiefeng. Prediction of residual stress and deformation of 316L multi-layer multi-pass welding based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 20-28. DOI: 10.12073/j.hjxb.20230520002
    [2]LUO Liuxiang, XING Yanfeng. CMT spot welding deformation of sheet metal based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 79-83. DOI: 10.12073/j.hjxb.2019400104
    [3]ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13.
    [4]YANG Youwen, TIAN Zongjun, PAN Hu, WANG Dongsheng, SHEN Lida. Geometry quality prediction of Ni-based superalloy coating by laser cladding based on neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 78-82.
    [5]GAO Xiangdong, MO Ling, YOU Deyong, KATAYAMA Seiji. Prediction algorithm of weld seam deviation based on RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 1-4.
    [6]DENG Xin, WANG Chao, WEI Yanhong. Prediction system of mechanical properties of welded joints based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 109-112.
    [7]WEN Jianli, LIU Lijun, LAN Hu. Penetration state recognition of MIG welding based on genetic wavelet neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 41-44.
    [8]DONG Zhibo, WEI Yanhong, Zhan Xiaohong, WEI Yongqiang. Optimization of mechanical properties prediction models of welded joints combined neural network with genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 69-72.
    [9]WANG Min, YANG Lei, WEI Yanhong, WU Lin. ANN prediction models for tensile properties of TIG welded joints of TA15 titanium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 56-60.
    [10]LEI YU-cheng, ZHANG Cheng, CHENG Xiao-nong, CHEN Xi-zhang. Study in GTAW of fuzzy neural controller based genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 顾苏怡,闵娜,詹恒辉. ZL101/6061铝合金搅拌摩擦焊接头组织及性能研究. 兵器材料科学与工程. 2024(05): 39-44 .
    2. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 .
    3. 李充,田亚林,齐振国,王崴,杨彦龙,王依敬. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能. 焊接学报. 2022(06): 102-107+119 . 本站查看
    4. 杨新岐,元惠新,孙转平,闫新中,赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能. 材料工程. 2022(07): 128-138 .
    5. 付文侦,贺地求,王海军,赖瑞林. 静止轴肩搅拌摩擦焊技术研究现状. 热加工工艺. 2022(15): 7-13 .
    6. 张军,王稳,王健,金涛涛,田志鹏. 静轴肩摩擦搅拌焊温度场仿真分析与参数优化. 中国机械工程. 2022(17): 2115-2124 .
    7. 朱志,郑森木,欧晓琴,余超,王向东,宋海滨,唐帅,苏乂南. 2219铝合金机器人静轴肩搅拌摩擦焊工艺研究. 航天制造技术. 2022(05): 25-29 .
    8. 祝宗煌,左立生,李泽阳,左敦稳. 一种搅拌头轴肩临界值的计算方法. 机械制造与自动化. 2021(01): 66-69 .
    9. 贺地求,刘朋,王海军,王东曜,赖瑞林. 2219-T6静轴肩辅助搅拌摩擦焊组织与性能分析. 湖南大学学报(自然科学版). 2021(08): 11-18 .
    10. 宋刚,程继文,刘振夫. 基于“热导拘束+局部变形强化”的铝合金焊轧复合成形方法. 机械工程学报. 2020(08): 85-91 .
    11. 牛海侠,朱松波,张琼,李蕾. A357铝合金的半固态触变压缩力学行为研究. 黄河科技学院学报. 2020(05): 41-46 .
    12. 褚强,郝思洁,Devang Sejani,Vivek Patel,李文亚. 静止轴肩搅拌摩擦焊接研究进展及展望. 电焊机. 2020(09): 44-52 .
    13. 姜月,柴玮,刘家伦,朱浩,王军. 7075铝合金搅拌摩擦焊接头变形行为及等效模型. 热加工工艺. 2019(09): 215-219 .
    14. 孙舒蕾,张会杰,赵晟伟,谢胜楠,吕洋. 搅拌摩擦焊焊缝表面凹陷现象控制方法研究现状. 精密成形工程. 2019(03): 138-143 .
    15. 郝云飞,马建波,毕煌圣,李超,王国庆. 铝合金T形接头静止轴肩搅拌摩擦焊接及组织性能分析. 焊接学报. 2019(07): 48-54+163 . 本站查看
    16. 曾申波,陈高强,张弓,史清宇. T形接头角接静轴肩搅拌摩擦焊三维流动特征. 焊接学报. 2019(12): 1-5+161 . 本站查看
    17. 王瑾,李送斌,张妍,陆艺. 焊接工艺参数对6061-T6铝合金静止轴肩搅拌摩擦焊组织及力学性能的影响. 焊接. 2019(11): 33-38+67 .
    18. 张铁浩,刘雪松,邢艳双. 搅拌摩擦焊修复ZL210铸造铝合金组织与性能分析. 焊接学报. 2018(04): 115-118+134 . 本站查看
    19. 李丰,党鹏飞,刘雪松. 基于不旋转轴肩的铝镁异种材料搅拌摩擦焊. 焊接学报. 2018(05): 55-58+131 . 本站查看
    20. 张华,赵常宇,林三宝,石功奇. 7050-T7451铝合金静轴肩搅拌摩擦焊接头组织与性能研究. 焊接. 2018(09): 5-9+65 .
    21. 李金全,刘会杰. 2219-T6铝合金静止轴肩搅拌摩擦焊接工艺及接头组织性能. 航天制造技术. 2017(06): 1-6+11 .
    22. 王敏,张会杰,张骁,于涛,杨广新. 一种新型零减薄搅拌摩擦焊工艺. 焊接学报. 2016(10): 37-40+131 . 本站查看

    Other cited types(15)

Catalog

    Article views (221) PDF downloads (53) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return