Citation: | LUO Liuxiang, XING Yanfeng. CMT spot welding deformation of sheet metal based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 79-83. DOI: 10.12073/j.hjxb.2019400104 |
Cheng Fangjie, Li Huijuan, Lian Jinrui, et al. Influence of variation of welding parameters on spot welding quality[J]. Automobile Technology, 2005(4): 35 − 37
|
Rodriguez N, Vazquez L, Huarte L, et al. Wire and arc additive manufacturing: a comparison between CMT and top TIG processes applied to stainless steel[J]. Welding in the World, 2018, 62(5): 1083 − 1096.
|
Peng Jinning, Chen Bingsen, Zhu Ping. Intelligent design of welding procedure parameters based on neural networks[J]. Transactions of the China Welding Institution, 1998, 19(1): 19 − 23
|
崔晴晴. 铝合金和镀锌钢的CMT焊接技术研究[D]. 江苏: 江苏科技大学, 2012.
|
Zhang Pengxian, Li Hao, Zhang Jie. A GABP optimized algorithm for filler rate of non-heated wire[J]. Transactions of the China Welding Institution, 2012, 33(12): 77 − 80
|
程方杰, 李慧娟, 廉金瑞, 等. 焊接参数变化对点焊质量的影响[J]. 汽车技术, 2005(4): 35 − 37
|
Zhang Yubao, Gou Jianjun, Zhang Enhui, et al. Welding deformation prediction of SMAW based on improved genetic neural network[J]. Hot Working Technology, 2015, 44(1): 208 − 210
|
彭金宁, 陈炳森, 朱 平. 焊接工艺参数的神经网络智能设计[J]. 焊接学报, 1998, 19(1): 19 − 23
|
张鹏贤, 李 浩, 张 杰. 一种冷丝填充速度的GABP优化算法[J]. 焊接学报, 2012, 33(12): 77 − 80
|
Chen Daliang, Li Hongliang, Gu Cansong, et al. The effect of subframe system boundary constraints on accuracy of computational modal analysis[J]. Automobile Technology, 2016(4): 27 − 30
|
张玉宝, 苟建军, 张恩慧, 等. 基于改进遗传神经网络的SMAW焊接变形预测[J]. 热加工工艺, 2015, 44(1): 208 − 210
|
Nie Y P, Zhang P L, Wu X, et al. Rapid prototyping of 4043 Al-alloy parts by cold metal transfer[J]. Science and Technology Welding and Joining, 2018, 23(6): 527 − 535.
|
陈达亮, 李洪亮, 顾灿松, 等. 副车架系统边界约束对计算模态分析精度的影响研究[J]. 汽车技术, 2016(4): 27 − 30
|
林惠乐. 基于遗传神经网络的CO2弧焊机器人工艺参数优化研究[D]. 广西: 广西大学, 2015.
|
Lin W Y, Ren X Y, Zhou T T, et al. A novel robust algorithm for position and orientation detection based on cascaded deep neural network[J]. Neurocomputing, 2018, 308: 138 − 146.
|