Advanced Search
XU Kai, LI Chunjian, LIU Xin, YU Zhaofei, HAO Qianyu, WANG Xiaogang, ZHAO Jiangyao. Effect of Ce content on microstructure and its evolution of deposited metal in submerged arc welding of 1000 MPa grade high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 116-125. DOI: 10.12073/j.hjxb.20250227001
Citation: XU Kai, LI Chunjian, LIU Xin, YU Zhaofei, HAO Qianyu, WANG Xiaogang, ZHAO Jiangyao. Effect of Ce content on microstructure and its evolution of deposited metal in submerged arc welding of 1000 MPa grade high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 116-125. DOI: 10.12073/j.hjxb.20250227001

Effect of Ce content on microstructure and its evolution of deposited metal in submerged arc welding of 1000 MPa grade high strength steel

More Information
  • Received Date: February 26, 2025
  • Available Online: May 15, 2025
  • The application of 1 000 MPa-grade high strength steel in the hydropower sector has become increasingly mature. However, the development of corresponding high-performance welding consumables in China remains limited. One of the key challenges in the research and development is maintaining high toughness at low temperatures in high-strength deposited metal. In this study, the deposited metal was optimized by adding Ce elements. Microstructural characterization methods, including SEM, TEM, and CLSM, were employed to investigate the effects of Ce content on the strength-toughness properties and microstructural evolution of the deposited metal in submerged arc welding of 1 000 MPa-grade high strength steel. The results indicate that when the Ce content is 0.02%, the tensile and yield strengths are increased by 3.7% and 17.2%, respectively, achieving the best balance between strength and toughness. The low-temperature impact toughness is generally enhanced, with the most significant improvement observed at a Ce content of 0.01%, showing increases of 24.3% and 42.2% at −40 °C and −60 °C, respectively. Microstructurally, Ce can refine grains, resulting in a more dispersed distribution of M-A constituents and enhancing the toughness of the microstructure. However, when the Ce content reaches 0.04%, the sizes of blocky ferrite and acicular ferrite increase, along with a higher proportion of large grains, adversely affecting the tensile strength. In terms of the evolution mechanism, the synergistic enrichment of Ce and C induces lattice distortion, promoting the formation of M-A constituents. At a Ce content of 0.02%, the residual austenite content increases, leveraging the TRIP effect to enhance plastic deformation capacity and facilitating the transformation of lower bainite, thereby achieving a synergistic improvement in strength and toughness. In contrast, a Ce content of 0.04% leads to exacerbated grain boundary segregation, the formation of Ce-containing brittle phase precipitates, and reduced austenite stability, resulting in a deterioration of impact toughness compared to that at a Ce content of 0.02%.

  • [1]
    LI X Z, CHEN Z J, FAN X C, et al. Hydropowerdevelopment situation and prospects in China[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 232 − 239. doi: 10.1016/j.rser.2017.08.090
    [2]
    PéREZ-DíAZ J I, CHAZARRA M, GARCíA-GONZáLEZ J, et al. Trendsand challenges in the operation of pumped-storagehydropower plants[J]. Renewable and Sustainable EnergyReviews, 2015, 44: 767 − 784. doi: 10.1016/j.rser.2015.01.029
    [3]
    HORIKAWA K, WATANABE N. Application of extra-high tensile strength steel for hydropower plants[J]. Welding in the World: Journal of the International Institute of Welding: Journal of the International Institute of Welding, 2008, 52: 3-1 − 3-8.
    [4]
    HARA N, SATO M. Development and application of weldingconsumables for 950 MPa class high strength steels [C]//Conference on High Strength Steels for Hydropower Plants, Takasaki, Japan, 2009.
    [5]
    KIPPENHAN N, GSCHNEIDNER Jr K A. RARE-EARTH METALS IN STEELS[R]. Iowa State Univ. of Science and Technology, Ames. Rare-Earth Information Center, 1970.
    [6]
    PREINFALK C, MORTEANI G. The industrial applications of rare earth elements[C]//Lanthanides, Tantalum and Niobium: Mineralogy, Geochemistry, Characteristics of Primary Ore Deposits, Prospecting, Processing and Applications Proceedings of a workshop in Berlin, November 1986. Springer Berlin Heidelberg, 1989: 359 − 370.
    [7]
    李春龙. 稀土在钢中应用与研究新进展[J]. 稀土, 2013, 34(3): 78 − 85.

    LI Chunlong. New progress in the application and research of rare earth in steel[J]. Chinese Rare Earths, 2013, 34(3): 78 − 85.
    [8]
    王力锋, 刘凤德, 张宏, 等. 氧化铈对高强钢复合焊接焊缝组织与韧性的影响[J]. 机械工程学报, 2016, 52(22): 70 − 77. doi: 10.3901/JME.2016.22.070

    WANG Lifeng, LIU Fengde, ZHANG Hong, et al. Effect of cerium oxide on the microstructure and toughness of hybrid welding joints of high-strength steel[J]. Journal of Mechanical Engineering, 2016, 52(22): 70 − 77. doi: 10.3901/JME.2016.22.070
    [9]
    孟祥海, 王伟, 毕胜, 等. Ce/Ce-Zr夹杂物诱导高强船板钢中针状铁素体形核行为的研究[J]. 钢铁钒钛, 2022, 43(2): 146 − 151. doi: 10.7513/j.issn.1004-7638.2022.02.022

    MENG Xianghai, WANG Wei, BI Sheng, et al. Study on nucleation behavior of acicular ferrite induced by Ce/Ce-Zr inclusions in high-strength ship plate steel[J]. Iron and Vanadium Titanium, 2022, 43(2): 146 − 151. doi: 10.7513/j.issn.1004-7638.2022.02.022
    [10]
    臧若愚, 李晶, 黄飞. 稀土Ce对高强工程机械用钢夹杂物和高温塑性的影响[J]. 有色金属科学与工程, 2024, 15(3): 449 − 456.

    ZANG Ruoyu, LI Jing, HUANG Fei. Effect of rare earth Ce on inclusions and high temperature ductility of high-strength engineering machinery steel[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 449 − 456.
    [11]
    郜慧敏, 方琪, 孙伟. 稀土La对C-Mn-Si钢静态软化行为的影响[J]. 世界有色金属, 2017(11): 267 − 269.

    GAO Huimin, FANG Qi, SUN Wei. Effect of rare earth La on static softening behavior of C-Mn-Si steel[J]. World Nonferrous Metals, 2017(11): 267 − 269.
    [12]
    勤牧, 杨雄, 杨维宇. 包钢含稀土Q690CF高强钢的研制[J]. 包钢科技, 2020, 46(2): 52 − 55. doi: 10.3969/j.issn.1009-5438.2020.02.016

    QIN Mu, YANG Xiong, YANG Weiyu. Development of rare earth-containing Q690CF high-strength steel at baogang[J]. Science & Technology of Baotou Steel, 2020, 46(2): 52 − 55. doi: 10.3969/j.issn.1009-5438.2020.02.016
    [13]
    冯伟, 于庭祥, 徐锴, 等. 1 000 MPa级高强钢埋弧焊熔敷金属组织及性能[J]. 焊接, 2023(11): 6 − 12. doi: 10.12073/j.hj.20230706001

    FENG Wei, YU Tingxiang, XU Kai, et al. Microstructure and properties of submerged arc welding deposit metal for 1000 MPa grade high-strength steel[J]. Welding & Joining, 2023(11): 6 − 12. doi: 10.12073/j.hj.20230706001
    [14]
    于彦冲, 陈伟庆, 郑宏光. 铈及混合稀土对Fe-36Ni低膨胀合金凝固组织的影响[J]. 中国稀土学报, 2012, 30(2): 175 − 180. doi: 10.1016/S1002-0721(12)60018-0

    YU Yanchong, CHEN Weiqing, ZHENG Hongguang. Effect of cerium and mixed rare earths on the solidification structure of Fe-36Ni low-expansion alloy[J]. Journal of Rare Earths, 2012, 30(2): 175 − 180. doi: 10.1016/S1002-0721(12)60018-0
    [15]
    刘朋. 稀土在相变诱发塑性钢中的组织细化与微合金化效应研究[D]. 合肥: 中国科学技术大学, 2024.

    LIU Peng. Study on the microstructure refinement and microalloying effect of rare earth in transformation-induced plasticity steels [D]. Hefei: University of Science and Technology of China, 2024.
    [16]
    蔡恒君. 1000 MPa以上级别汽车用冷轧高强钢超快冷物理冶金行为及变形特性研究[D]. 北京: 北京科技大学, 2018.

    CAI Hengjun. Study on the ultrafast cooling physical metallurgy behavior and deformation characteristics of cold-rolled high-strength steel for automotive applications with a strength level above 1000 MPa [D]. BeiJing: University of Science and Technology Beijing, 2018.
    [17]
    王龙妹. 稀土在低合金及合金钢中的应用[M]. 北京: 冶金工业出版社, 2016.

    WANG Longmei. Application of rare earths in low-alloy and alloy steels [M]. Beijing: Metallurgical Industry Press, 2016.
    [18]
    SOLEIMANI M, KALHOR A, MIRZADEH H. Transformation-induced plasticity (TRIP) in advanced steels: A review[J]. Materials Science & Engineering A, 2020, 795(9): 140023.
    [19]
    LIU P, HOU X, YANG C, et al. Tailoring microstructure evolution and austenite stability of TRIP steels by Rare-Earth micro-alloying[J]. Materials Characterization, 2023, 203: 1 − 16. doi: 10.1016/j.matchar.2023.113035
    [20]
    冯伟, 于庭祥, 陈波, 等. Cr含量对 1000 MPa级高强钢熔敷金属组织演变的作用机制[J]. 焊接学报, 2024, 45(9): 76 − 83. doi: 10.12073/j.hjxb.20240409001

    FENG Wei, YU Tingxiang, CHEN Bo, et al. Mechanism of the effect of Cr content on the microstructure evolution of deposited metal in 1000 MPa grade high-strength steel[J]. Transactions of the China Welding Institution, 2024, 45(9): 76 − 83. doi: 10.12073/j.hjxb.20240409001
    [21]
    JIANG Y Y, WANG Z D, DENG X T, et al. Effect of cerium addition on the bainite transformation behavior of medium carbon microalloyed steel[J]. Materials Research Express, 2019, 6(10): 106526. doi: 10.1088/2053-1591/ab36f8
    [22]
    HSU T Y. Effects of rare earth element on isothermal and martensitic transformations in low carbon steels[J]. Transactions of the Iron & Steel Institute of Japan, 2007, 38(11): 1153 − 1164.
    [23]
    梁益龙, 谭起兵, 李光新, 等. 不同稀土含量的GDL-1钢中贝氏体相变研究[J]. 兵器材料科学与工程, 2008(3): 31 − 34. doi: 10.3969/j.issn.1004-244X.2008.03.008

    LIANG Yilong, TAN Qibing, LI Guangxin, et al. Study on bainitic transformation in GDL-1 steel with different rare earth contents[J]. Ordnance Material Science and Engineering, 2008(3): 31 − 34. doi: 10.3969/j.issn.1004-244X.2008.03.008
    [24]
    CAI G J, LI C S. Effects of Ce on inclusions, microstructure, mechanical properties, and corrosion behavior of AISI 202 stainless steel[J]. Journal of Materials Engineering & Performance, 2015, 24(10): 3989 − 4009.
    [25]
    WANG Y J, CHEN J G, YANG J, et al. Effect of La2O3 on granular bainite microstructure and wear resistance of hardfacing layer metal[J]. Journal of Rare Earths, 2014, 32(1): 83 − 89. doi: 10.1016/S1002-0721(14)60036-3
  • Related Articles

    [1]GONG Baoming, TIAN Runming, LIU Xiuguo, DENG Caiyan, WANG Dongpo. Comparative study on determination methods of resistance curves of circular joints based on single edge notched tensile specimens[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 21-28. DOI: 10.12073/j.hjxb.20210610001
    [2]WANG Chenxi, TANG Wencheng. Numerical simulation of flange welding deformation based on dynamic constraint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 67-73. DOI: 10.12073/j.hjxb.20200716003
    [3]JING Hongyang, LI Shibo, XU Lianyong, ZHAO Lei. Experimental study on high temperature fracture toughness of P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 8-12. DOI: 10.12073/j.hjxb.2019400033
    [4]HAN Yongdian, LI Zhan, XU Lianyong, JING Hongyang, ZHAO Lei. Constraint effect of corrosion fatigue crack growth behavior in S690 high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 13-18. DOI: 10.12073/j.hjxb.2018390290
    [5]FENG Bao<sup>1,2</sup>, QIN Ke<sup>1,2</sup>, JIANG Zhiyong<sup>1</sup>. ELM with L1/L2 regularization constraints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 31-35. DOI: 10.12073/j.hjxb.2018390219
    [6]ZHENG Jian, ZHANG Ke, LUO Zhifeng, WANG Zhigang. Hand-eye calibration of welding robot based on the constraint of spatial line[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 108-113. DOI: 10.12073/j.hjxb.2018390211
    [7]LUO Zhiyong<sup>1,2</sup>, WANG Peng<sup>1</sup>, YOU Bo<sup>2</sup>, LIU Jiahui<sup>1</sup>, MIAO Shidi<sup>1</sup>. Iterative reduction optimization algorithm for quality of welding procedure based on constraint time[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 51-54. DOI: 10.12073/j.hjxb.2018390200
    [8]JIA Pengyu1,2, JING Hongyang1, XU Lianyong1, WEI Chen2. Construction of J-R curve for X80 steel based on constraint level[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 31-35. DOI: 10.12073/j.hjxb.2018390090
    [9]LI Yizhe, WANG Dongpo, DENG Caiyan, GONG Baoming, WANG Sheng. Comparasion of methods to determine CTOD from single edge notched specimens[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 59-62. DOI: 10.12073/j.hjxb.20170414
    [10]WANG Xuedong, HE Enguang, CHEN Li. Influence of constraint on welding deformation of T joint welded by dual-beam laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 101-105.
  • Cited by

    Periodical cited type(5)

    1. 唐益爽,邹阳帆,李文亚,王卫兵,褚强,朱永山,汪庚. 协同双面搅拌摩擦焊接6061铝合金工艺. 电焊机. 2023(03): 72-76+110 .
    2. 回丽,李东澎,安金岚,崔浩,王坤宇. 连接工艺对铝合金搭接结构力学性能影响. 兵器材料科学与工程. 2022(03): 20-24 .
    3. 回丽,李东澎,宋万万,崔浩,安金岚,王坤宇. 腐蚀环境对搅拌摩擦点焊接结构力学性能的影响. 有色金属工程. 2022(06): 1-7 .
    4. 王方萍,柯展煌,赵英权,李志炜,李巧云,王炯铭,严洪,何秋婷. 一种U形结构换热器的制造技术. 压力容器. 2022(05): 83-88 .
    5. 徐锴,武鹏博,梁晓梅,陈健,黄瑞生. 铝合金激光-多股绞合焊丝MIG复合焊特性分析. 焊接学报. 2021(01): 16-23+98 . 本站查看

    Other cited types(1)

Catalog

    Article views (34) PDF downloads (8) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return