Citation: | JING Hongyang, LI Shibo, XU Lianyong, ZHAO Lei. Experimental study on high temperature fracture toughness of P92 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 8-12. DOI: 10.12073/j.hjxb.2019400033 |
Guan Pengtao, Li Xiangqing, Zheng Sanlong, et al. Study and comparison of test method for measurement of fracture toughness between ASTM and ISO standards[J]. Journal of Mechanical Engineering, 2017, 53(6): 60 − 67
|
Bergant M A, Yawny A A, Ipiña J E P. J-resistance curves for Inconel 690 and Incoloy 800 nuclear steam generators tubes at room temperature and at 300 °C[J]. Journal of Nuclear Materials, 2017, 486: 298 − 307.
|
Cockeram B V. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum-0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum flat products[J]. Materials Science & Engineering A, 2006, 418(1): 120 − 136.
|
Harimon M A, Hidayati N A, Miyashita Y, et al. High temperature fracture toughness of TZM alloys with different kinds of grain boundary particles[J]. International Journal of Refractory Metals & Hard Materials, 2017, 66: 52 − 56.
|
American Society for Testing and Material. Standard test methods for measurement of fracture toughness:ASTM E1820-11[S]. Philadelphia: ASTM, 2011.
|
International Organization for Standardization. Metallic materials-Unified method of test for the determination of quasistatic fracture toughness:ISO 12135-2002[S]. Geneva: ISO, 2002.
|
O'Dowd N P, Shih C F. Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields[J]. Journal of the Mechanics & Physics of Solids, 1991, 39(8): 989 − 1015.
|
Guo W. Elastoplastic three dimensional crack border field-I. Singular structure of the field[J]. Engineering Fracture Mechanics, 1993, 46(1): 93 − 104.
|
Tkach Y, Burdekin F M. A three-dimensional analysis of fracture mechanics test pieces of different geometries-Part 1 Stress-state ahead of the crack tip[J]. International Journal of Pressure Vessels & Piping, 2012, s 93-94(5): 42 − 50.
|
Shen Y, Shang Z, Xu Z, et al. The nature of nano-sized precipitates in ferritic/martensitic steel P92 produced by thermomechanical treatment[J]. Materials Characterization, 2016, 119: 13 − 23.
|
Khayatzadeh S, Tanner D W J, Truman C E, et al. Creep deformation and stress relaxation of a martensitic P92 steel at 650 °C[J]. Engineering Fracture Mechanics, 2017, 175: 57 − 71.
|
Zhao L, Jing H, Xu L, et al. Investigation on mechanism of type IV cracking in P92 steel at 650 °C[J]. Journal of Materials Research, 2011, 26(7): 934 − 943.
|
关鹏涛, 李相清, 郑三龙, 等. ASTM和ISO标准断裂韧度测试方法比较研究[J]. 机械工程学报, 2017, 53(6): 60 − 67
|
Joyce J A, Link R E. Effects of constraint on upper shelf fracture toughness[J]. Astm Special Technical Publication, 1995, 26: 142 − 177.
|
[1] | ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12. |
[2] | ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26. |
[3] | ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36. |
[4] | ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104. |
[5] | LUO Yi, LIU Jinhe, YE Hong, YAN Zhonglin, SHEN Bin. Numerical simulation on temperature field of electron beam welding of AZ61 magnesium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 73-76. |
[6] | WANG Qing, ZHANG Yanhua. Numerical simulation on electron beam welding temperature field of heat-resisting superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 97-100. |
[7] | WANG Xi-jing, HAN Xiao-hui, Guo Rui-jie, LI Jing. Numerical simulation of temperature field in friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 17-20. |
[8] | MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59. |
[9] | Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204. |
[10] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |
1. |
李德福,王希靖,赵早龙,徐秋苹. 轴肩辅助加热6082铝合金摩擦塞补焊接头组织及力学性能. 焊接学报. 2022(01): 36-41+115 .
![]() | |
2. |
熊俊珍,杨新岐,唐文珅,元惠新. 焊后热处理对X52管线钢水下摩擦塞焊接头断裂韧性的影响. 焊接. 2021(04): 1-7+62 .
![]() | |
3. |
赵慧慧,高焓,胡蓝,董吉义,尹玉环,崔雷. 2219铝合金薄板拉拔式摩擦塞焊工艺及力学性能优化. 焊接. 2021(06): 48-55+64 .
![]() |