Advanced Search
JIAO Shuaijie, WANG Guofu, CHEN Bo, GUO Xuchao, BI Yanping, HAN Ying, LIU Manyu. Effect of tempering treatment on microstructure and properties of supermartensitic stainless steel deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 98-104. DOI: 10.12073/j.hjxb.20240703001
Citation: JIAO Shuaijie, WANG Guofu, CHEN Bo, GUO Xuchao, BI Yanping, HAN Ying, LIU Manyu. Effect of tempering treatment on microstructure and properties of supermartensitic stainless steel deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 98-104. DOI: 10.12073/j.hjxb.20240703001

Effect of tempering treatment on microstructure and properties of supermartensitic stainless steel deposited metal

More Information
  • Received Date: July 02, 2024
  • Available Online: April 24, 2025
  • The welding of large-scale impluse turbine runners is a significant engineering challenge that needs urgent resolution in China. This presents elevated demands for the impact performance of supermartensitic stainless steel welding materials. The optimization of the post-weld heat treatment process is a crucial method to address this issue. For this purpose, the effect of various tempering treatment on the microstructure and mechanical properties of supermartensitic stainless steel deposited metal was investigated. The chemical composition, microstructure, tensile strength, impact and hardness of the deposited metal were tested and characterized. The results show that the tempering microstructure of the deposited metal consists of fine tempered martensite and reversed austenite. Compared with the one-stage tempering at 590 ℃ for 8 hours, the two-stage tempering can increase the content of the reversed austenite. The content of the reversed austenite further increases with the increase in the two-stage tempering temperature. The increase in the soft and ductile reversed austenite improves the impact performance of the deposited metal. After the two-stage tempering at 650 ℃ for 2 hours followed by 590 ℃ for 8 hours, a 16% volume fraction of reversed austenite can be obtained. The impact absorption energy of the deposited metal at 0 ℃ reaches 90 J, which is about 23% higher than the one-stage tempering. The corresponding impact fracture characteristics change from ductile + partially brittle fracture to complete ductile fracture.

  • [1]
    王鹏. 逆变奥氏体对13Cr超级马氏体不锈钢力学和腐蚀性能的影响[D]. 北京: 北京科技大学, 2023.

    WANG Peng. Effect of reversed austenite on mechanical and corrosion properties of 13Cr super martensitic stainless steel[D]. Beijing: University of Science and Technology Beijing, 2023.
    [2]
    苏允海, 魏祖勇, 张桂清, 等. 不同补焊次数下ZG06Cr13Ni4Mo的组织演变规律[J]. 材料导报, 2023, 37(16): 197 − 202.

    SU Yunhai, WEI Zuyong, ZHANG Guiqing, et al. Microstructure evolution law of ZG06Cr13Ni4Mo with different repair welding numbers[J]. Materials Reports, 2023, 37(16): 197 − 202.
    [3]
    谭晓霞. 大型冲击式转轮用国产04Cr13Ni5Mo马氏体不锈钢锻件研究现状[J]. 材料导报, 2022, 36(S2): 422 − 425.

    TAN Xiaoxia. Research status of domestic 04Cr13Ni5Mo Martensitic stainless steel forgings for runner of large impact hydropower unit[J]. Materials Reports, 2022, 36(S2): 422 − 425.
    [4]
    SONG Y S, LI C W, LIAO Y, et al. Effects of tempering temperature on the microstructure evolution and mechanical properties of 16%Cr-5%Ni super martensitic stainless steel[J]. Journal of Materials Research and Technology, 2023, 24: 9306 − 9322. doi: 10.1016/j.jmrt.2023.05.165
    [5]
    WANG P, XIAO N M, LU S P, et al. Investigation of the mechanical stability of reversed austenite in 13%Cr-4%Ni martensitic stainless steel during the uniaxial tensile test[J]. Materials Science & Engineering A, 2013, 586: 292 − 300.
    [6]
    NIESSEN F, GAZDER A A, HALD J, et al. Multiscale in-situ studies of strain-induced martensite formation in inter-critically annealed extra-low-carbon martensitic stainless steel[J]. Acta Materialia, 2021, 220: 117339. doi: 10.1016/j.actamat.2021.117339
    [7]
    ZHANG S H, LYU D Z, XIONG J. The effect of reversed austenite on mechanical properties of 13Cr4NiMo steel: a CPFEM study[J]. Journal of Materials Research and Technology, 2022, 18: 2963 − 2976. doi: 10.1016/j.jmrt.2022.03.186
    [8]
    SONG Y Y, LI X Y, RONG L J, et al. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steels[J]. Materials Science & Engineering A, 2011, 528: 4075 − 4097.
    [9]
    SUN H D, ZHAO K Y, RUI J Q, et al. Effect of tempering process on structure and properties of super martensitic stainless steel[J]. Advanced Materials Research, 2012, 581-582: 1023 − 1026. doi: 10.4028/www.scientific.net/AMR.581-582.1023
    [10]
    JIANG W, ZHAO K Y, YE D, et al. Effect of heat treatment on reversed austenite in Cr15 super martensitic stainless steel[J]. Journal of Iron and Steel Research International, 2013, 20(5): 61 − 65. doi: 10.1016/S1006-706X(13)60099-0
    [11]
    XIONG J, TONG Y L, PENG J L, et al. Strength–toughness improvement of 13Cr4NiMo martensitic stainless steel with thermal cyclic heat treatment[J]. Journal of Iron and Steel Research International, 2023, 30(8): 1499 − 1510. doi: 10.1007/s42243-023-00960-2
    [12]
    SONG Y Y, PING D H, YIN F X, et al. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J]. Materials Science & Engineering A, 2010, 527: 614 − 618.
    [13]
    ZAPPA S, SVOBODA H, SURIAN E. Effect of post-weld heat treatment on the mechanical properties of supermartensitic stainless steel deposit[J]. Journal of Materials Engineering and Performance, 2017, 26(2): 514 − 521. doi: 10.1007/s11665-016-2467-8
    [14]
    WU S P, WANG D P, ZHAO C, et al. Enhanced toughness of Fe-12Cr-5.5Ni-Mo-deposited metals through formation of fine reversed austenite[J]. Journal of Materials Science, 2018, 53(22): 15679 − 15693. doi: 10.1007/s10853-018-2718-1
    [15]
    曾道平, 郑韶先, 安同邦, 等. 440MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究[J]. 焊接学报, 2024, 45(3): 120 − 128. doi: 10.12073/j.hjxb.20230318002

    ZENG Daoping, ZHENG Shaoxian, AN Tongbang, et al. Study on microstructure and low-temperature impact toughness of deposited metal form covered electrodes for 440 MPa grade high-strength steel[J]. Transactions of the China welding institution, 2024, 45(3): 120 − 128. doi: 10.12073/j.hjxb.20230318002
  • Related Articles

    [1]HUANG Yong, GUO Wei, WANG Yanlei. Effects of introductions of oxygen and nitrogen elements on impact toughness of gas pool coupled activating TIG weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 83-89. DOI: 10.12073/j.hjxb.20210919001
    [2]YAN Han, ZHAO Di, QI Tongfu, LENG Xuesong, FU Kuijun, HU Fengya. Effect of element Nb on microstructures and impact toughness of CGHAZ in TiNbV micro-alloyed steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 33-37. DOI: 10.12073/j.hjxb.20200906001
    [3]WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001
    [4]CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003
    [5]LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96.
    [6]DU Bing, SUN Fenglian, XU Yujun, LI Xiaoyu, LÜ Xiaochun, QIN Jian. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 1-4.
    [7]HU Jie, JIANG Zhizhong, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, ZHANG Hua. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 67-71.
    [8]LIANG Guoli, YANG Shanwu, WU Huibin, LIU Xueli. Impact toughness of simulated CGHAZ with high heat input for adding trace Zr oil tank steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 85-88.
    [9]XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.
    [10]Ma Jin. EFFECT OF TRACE BORON ON IMPACT TOUGHNESS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (3): 155-161.
  • Cited by

    Periodical cited type(8)

    1. 彭炎,严宇,王俊龙,杨会敏,刘伟达,徐喆,陈春林. 厚壁奥氏体不锈钢焊缝TRL面阵探头全聚焦成像检测的仿真与分析. 无损检测. 2025(05): 8-17 .
    2. 刘桂刚. 奥氏体不锈钢小径管焊缝超声波相控阵检测技术应用及分析. 金属加工(热加工). 2024(06): 130-136 .
    3. 倪国胜,娄琳,高志萌. 316L钢氩弧焊焊接接头超声检测可行性试验研究. 设备管理与维修. 2024(16): 12-14 .
    4. 迟大钊,徐智贤,刘海春,李庆生,郭强,苏维刚,贾涛. 基于改进SIFT算法的超声图像拼接方法. 焊接学报. 2024(10): 1-7 . 本站查看
    5. 吴剑强. 低压低功耗集成电路引线钎缝超声波检测方法研究. 焊接技术. 2023(04): 76-80+114 .
    6. 朱新杰,李永涛,邓明晰,姚森. 一种用于焊接结构多帧满秩成像检测的超声SH导波换能器. 焊接学报. 2023(04): 84-92+134 . 本站查看
    7. 邓丽娟. 双晶面阵列探头辐射声场特性仿真与分析. 水利技术监督. 2023(06): 10-13 .
    8. 苏雨露. 基于深度重采样的奥氏体不锈钢焊缝超声TOFD检测技术研究. 自动化应用. 2023(17): 132-134 .

    Other cited types(7)

Catalog

    Article views (56) PDF downloads (16) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return