Advanced Search
CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003
Citation: CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003

Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint

More Information
  • Received Date: August 17, 2019
  • Available Online: September 26, 2020
  • The impact absorbed energy of various regions of the heat affected zone(HAZ) of submerged arc welding actual welded joint for 09MnNiDR low temperature pressure vessel steel was measured, the microstructures, fracture surface were observed and anlyzed. Based on the experimental results, the microstructures of all regions of HAZ, the weakest region can be determined, and the effects of the weakest region on impact toughness of the welded joint were further discussed. The results show that at −70 °C, the average impact absorbed energy of the base metal, subcritical heat affected zone, intercritical heat affected zone, and fine grain heat affected zone of the welded joint is above 270 J, which all show good toughness. The average impact absorbed energy of the weld metal is 139 J. The coarse grain heat affected zone (CGHAZ) is the weakest region of the welded joint. When the notch tip is completely composed of CGHAZ, the impact absorbed energy of 20 J is reached. The impact energy of CGHAZ decrease to 92.7% of the base metal. The microstructure of CGHAZ is composed of coarse granular bainite, lath bainite and block ferrite. With the increase of the fraction of CGHAZ in front of the notch tip, the closer from notch location is, the lower the impact absorbed energy of the specimen is, which fully reflects the influence of the weakest region on the impact toughness.
  • Lan L, Qiu C, Zhao D, et al. Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel[J]. Materials Science & Engineering A, 2012, 558(12): 592 − 601.
    Yang Y, Cheng J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content[J]. Materials Science & Engineering A, 2012, 558(12): 692 − 701.
    崔冰, 彭云, 彭梦都, 等. 焊接热输入对Q890高强钢热影响区裂纹扩展的影响[J]. 焊接学报, 2017, 38(8): 63 − 67. doi: 10.12073/j.hjxb.20150617003

    Cui Bing, Peng Yun, Peng Mengdu, et al. Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel[J]. Transactions of the China Welding Institution, 2017, 38(8): 63 − 67. doi: 10.12073/j.hjxb.20150617003
    Zhou Y, Jia T, Zhang X, et al. Microstructure and toughness of the CGHAZ of an offshore platform steel[J]. Journal of Materials Processing Technology, 2015, 219(5): 314 − 320.
    Zhu Z, Han J, Li H. Influence of heat input on microstructure and toughness properties in simulated CGHAZ of X80 steel manufactured using high-temperature processing[J]. Metallurgical and Materials Transactions A, 2015, 46(11): 5467 − 5475. doi: 10.1007/s11661-015-3122-y
    秦华, 苏允海, 连景宝. BWELDY960Q钢焊接热模拟热影响区组织与性能[J]. 焊接学报, 2018, 39(11): 97 − 101.

    Qin Hua, Su Yunhai, Lian Jingbao. Microstructure and properties in heat affected zone of BWELDY960Q steel by welding thermal simulation test[J]. Transactions of the China Welding Institution, 2018, 39(11): 97 − 101.
    Jang J, Ju J, Lee B, et al. Effects of microstructural change on fracture characteristics in coarse- grained heat- affected zones of QLT-processes 9% Ni steel[J]. Materials Science & Engineering A, 2003, 340(1-2): 68 − 79.
    Yang S, Ju L, Cong W. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding[J]. Journal of Materials Science & Technology, 2019, 35(8): 1747 − 1752.
    Cao R, Yang Z, Chan Z, et al. The determination of the weakest zone and the effects of the weakest zone on the impact toughness of the 12Cr2Mo1R welded joint[J]. Journal of Manufacturing Processes, 2020, 50(2): 539 − 546.
    Chen J, Cao R. Micromechanism of cleavage fracture of metals[M]. USA: Elsevier, 2014.
    Wang X, Wang X, Shang C, et al. Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness[J]. Materials Science & Engineering A, 2016, 649(1): 282 − 292.
    Liang Y, Chun L, De W, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel[J]. Materials Science & Engineering A, 2011, 529(11): 192 − 200.
    文明月, 董文超, 庞辉勇, 等. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501 − 511. doi: 10.11900/0412.1961.2017.00331

    Wen Mingyue, Dong Wenchao, Pang Huiyong, et al. Microstructure and impact toughness of welding heat affected zones of a Fe-Cr-Ni-Mo high strength steel[J]. Acta Metallurgica Sinica, 2018, 54(4): 501 − 511. doi: 10.11900/0412.1961.2017.00331
  • Related Articles

    [1]ZHANG Yonglin, CHENG Huichao, YANG Haifeng, LIU Ning, LIANG Yuandong. Impact toughness influence law and weldability analysis of 800 MPa grade steel for photovoltaic brackets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240428001
    [2]WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001
    [3]ZHANG Lihong, CHEN Furong, CHANG Jiangang. Effect of weld thermal cycle on low temperature toughness of 09MnNiDR steel heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 91-96. DOI: 10.12073/j.hjxb.20190911002
    [4]LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96.
    [5]DU Bing, SUN Fenglian, XU Yujun, LI Xiaoyu, LÜ Xiaochun, QIN Jian. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 1-4.
    [6]HU Jie, JIANG Zhizhong, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, ZHANG Hua. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 67-71.
    [7]LIANG Guoli, YANG Shanwu, WU Huibin, LIU Xueli. Impact toughness of simulated CGHAZ with high heat input for adding trace Zr oil tank steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 85-88.
    [8]XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.
    [9]ZHANG Yingqiao, ZHANG Hanqian, LIU Weiming. Effects of M-A constituent on toughness of coarse grain heat-affected zone in HSLA steels for oil tanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 109-112.
    [10]Ma Jin. EFFECT OF TRACE BORON ON IMPACT TOUGHNESS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (3): 155-161.
  • Cited by

    Periodical cited type(6)

    1. 刘金浩,李家辰,张亮亮,吴宝生,李鹏,董红刚. Al-Mg合金搅拌摩擦焊接头的组织演变及腐蚀性能. 机械制造文摘(焊接分册). 2025(02): 13-22+36 .
    2. 金聪聪,黄立兵,黄文彬,王大力,马月婷,李鹏,董红刚. 新型铝合金MIG焊接头微观组织与力学性能. 焊接学报. 2024(07): 74-82 . 本站查看
    3. 薛新莲,臧华平,王洪建,李顺方. 铝合金板激光切割实验工艺研究. 激光杂志. 2024(09): 183-187 .
    4. 陈晓,闫成旗,代俊辉. 基于IRSM的7075铝合金焊接接头抗拉强度可靠性优化设计. 焊接. 2024(10): 32-41 .
    5. 刘金浩,李家辰,张亮亮,吴宝生,李鹏,董红刚. Al-Mg合金搅拌摩擦焊接头的组织演变及腐蚀性能. 焊接学报. 2024(10): 8-18 . 本站查看
    6. 邓伟,罗坤,雷基林,宋仲模,徐远志,张勇. 基于灰色关联性分析的铝合金缸体铸造工艺参数优化. 特种铸造及有色合金. 2024(11): 1511-1517 .

    Other cited types(6)

Catalog

    Article views (310) PDF downloads (23) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return