Advanced Search
XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. Influence of welding thermal cycle on grain structure of 5083 aluminum alloy weld by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 27-33. DOI: 10.12073/j.hjxb.20240315001
Citation: XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. Influence of welding thermal cycle on grain structure of 5083 aluminum alloy weld by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 27-33. DOI: 10.12073/j.hjxb.20240315001

Influence of welding thermal cycle on grain structure of 5083 aluminum alloy weld by friction stir welding

More Information
  • Received Date: March 14, 2024
  • Available Online: May 05, 2025
  • 2 mm thick 5083 aluminum alloy was butt welded by FSW, and defect-free welded joints were obtained. The effect of the welding thermal cycle on the grain structure of the weld was studied by OM and EBSD. The results show that with the increase in the friction stir tool rotation speed, the strain rate rises, and the initial recrystallized grains caused by dynamic recrystallization decrease. The peak welding temperature exhibits a significant increase from 285 °C to 421 °C, accompanied by a corresponding reduction in cooling rate from 32.3 to 20.2 °C/s. This change results in significant grain growth, increasing the average grain size at the weld center from 1.4 to 8.2 μm. Under the high heat input condition, the grains with Goss type {110}<001> recrystallized texture grow rapidly, resulting in the shear texture changing to recrystallized texture. The change in the welding thermal cycle does not significantly affect the grain structure and textural type of the weld, and it just affects the final grain size and the proportion of large-angle grain boundaries. This microstructural stability of the weld is attributed to the fact that the grain refinement is dominated by continuous dynamic recrystallization throughout a wide range of heat inputs.

  • [1]
    戴翔, 石磊, 武传松, 等. 2195-T6铝锂合金搅拌摩擦焊接头微观组织结构与力学性能[J]. 焊接学报, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002

    DAI Xiang, SHI Lei, WU Chuansong, et al. Microstructure and mechanical properties of 2195-T6 Al-Li alloy joint prepared by friction stir welding[J]. Transactions of the China Welding Institution, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002
    [2]
    KALINENKO A, VYSOTSKIY I, MALOPHEYEV S, et al. Influence of the weld thermal cycle on the grain structure of friction-stir joined 6061 aluminum alloy[J]. Materials Characterization, 2021, 178: 111202. doi: 10.1016/j.matchar.2021.111202
    [3]
    PRANGNELL P B, BOWEN J R, APPS P J. Ultra-fine grain structures in aluminium alloys by severe plastic deformation processing[J], Materials Science and Engineering A, 2004, 375–377: 178–185.
    [4]
    XU N, SONG Q N, BAO Y F. Investigation on microstructure development and mechanical properties of large-load and low-speed friction stir welded Cu-30Zn brass joint[J]. Materials Science & Engineering A, 2018, 726: 169 − 178.
    [5]
    Yi D, Mironov S, Sato Y S, et al. Effect of cooling rate on microstructure of friction-stir welded AA1100 aluminum alloy[J]. Philosophical Magazine, 2016, 96: 1965 − 1977. doi: 10.1080/14786435.2016.1185186
    [6]
    XU N, UEJI R, FUJII H. Dynamic and static change of grain size and texture of copper during friction stir welding[J]. Journal of Materials Processing Technology, 2016, 232: 90 − 99. doi: 10.1016/j.jmatprotec.2016.01.021
    [7]
    温泉, 李文亚, 吴雪猛, 等. AA6056双轴肩搅拌摩擦焊接头非均匀性分析[J]. 焊接学报, 2023, 44(9): 88 − 94. doi: 10.12073/j.hjxb.20221129003

    WEN Quan, LI Wenya, WU Xuemeng, et al. Forming mechanism and processing of stationary upper shoulder BT-FSW[J]. Transactions of the China Welding Institution, 2023, 44(9): 88 − 94. doi: 10.12073/j.hjxb.20221129003
    [8]
    ESSA A R S, AHMED M M Z, MOHAMED A K Y A, et al. An analytical model of heat generation for eccentric cylindrical pin in friction stir welding[J]. Journal of Materials Research and technology, 2016, 5(3): 234 − 240. doi: 10.1016/j.jmrt.2015.11.009
    [9]
    IMAM M, SUN Y, FUJII H, et al. Deformation characteristics and microstructural evolution in friction stir welding of thick 5083 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99: 663 − 681. doi: 10.1007/s00170-018-2521-9
    [10]
    LEFFERS T, RAY R K. The brass-type texture and its deviation from the copper-type texture[J]. Progress in Materials Science, 2009, 54: 351 − 396.
    [11]
    许楠, 冯若男, 宋亓宁, 等. 微观组织对镁合金FSW焊缝应变硬化行为的影响[J]. 焊接学报, 2020, 41(11): 7 − 12.

    XU Nan, FENG Ruonan, SONG Qining, et al. Effects of microstructure on strain hardening behavior of friction stir welded magnesium alloy[J]. Transactions of the China Welding Institution, 2020, 41(11): 7 − 12.
    [12]
    YAZDIPOUR A, SHAFIEI M A, DEHGHANI K. Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083[J]. Materials Science and Engineering: A, 2009, 527: 192 − 197. doi: 10.1016/j.msea.2009.08.040
    [13]
    GERLICH A, YAMAMOTO M, NORTH T. Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds[J]. Metallurgical and Materials Transactions A, 2007, 38(6): 1291 − 1302. doi: 10.1007/s11661-007-9155-0
    [14]
    XU N, LIU L T, SONG Q N, et al. Improvement of microstructure and mechanical properties of rapid cooling friction stir-welded A1050 pure aluminum[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2024, 39(1): 134 − 141. doi: 10.1007/s11595-024-2864-z
  • Related Articles

    [1]ZHANG Jia, SHAO Peize, WANG Xinxin, HUANG Jiankang, FAN Ding. Method and technology of two TIG activating arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 62-69, 78. DOI: 10.12073/j.hjxb.20230730002
    [2]LEI Zheng, ZHU Zongtao, LI Yuanxing, CHEN Hui. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 9-14, 27. DOI: 10.12073/j.hjxb.20210131003
    [3]WANG Bo, SANG Jian, ZHANG Hongtao, TENG Yao, WANG Qichen. Analysis on welding processing properties of plasma-TIG coupling arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 94-99. DOI: 10.12073/j.hjxb.2019400161
    [4]WANG Jinbing, LV Xiaoqing, WANG Ying. Hybrid arc model for pulsed TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 26-30.
    [5]HUANG Yong, QU Huaiyu, WANG Xinxin, FAN Ding. Effect of distribution of anode temperature on weld appearance in arc coupled AA-TIG high speed welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 13-16.
    [6]ZHAO Fuhai, HUA Xueming, YE Xin, WU Yixiong. Analytical model of wire temperature distribution during hot-wire TIG welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 97-100.
    [7]LEI Zhenglong, CHEN Yanbin, LI Ying, ZHAO Yaobang. Effect of electric-field intensity on laser induced plasma triggering arc discharge in TIG arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 9-12,16.
    [8]WU Shikai, XIAO Rongshi. Effects of CO2 laser beam action on temperature of TIG arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 101-104.
    [9]ZHAO Huaxia, JIAO Xiangdong. Welding arc temperature in hyperbaric TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 17-20.
    [10]FAN Ding, HUANG Yong, ZHANG Rui-hua, FAN Qing-hua, Masao Ushio. Numerical analysis of the transport properties for no-equilibrium plasma[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 31-34.
  • Cited by

    Periodical cited type(8)

    1. 王恒,李国艳,李莎,桂海莲,王涛. 铜/钢复合板制备工艺及界面调控研究进展. 中国有色金属学报. 2025(01): 99-125 .
    2. 赵健,石磊,陆煜,崔烺,谢会起,吕竹文,王英. Ni中间层对铜/钢电子束焊接头组织与界面行为的影响. 兵器材料科学与工程. 2025(02): 126-132 .
    3. 杨栈琳,刘岩,曹博强,刘发,闫庆森,刘军华,刘兆真,李博. 增材制造铜/钢双金属材料研究进展. 精密成形工程. 2024(02): 117-129 .
    4. 周文坤,刁健帅,张敏,薛添淇,马克,毛威,马宏伟. 合金元素对Cu-Ni基熔覆层组织和性能的影响. 电焊机. 2024(11): 9-18+43 .
    5. 麻相龙,曹睿,董浩,王彩芹,张龙戈,闫英杰. 316L不锈钢/T2紫铜热等静压扩散连接接头的微观组织与力学性能. 焊接学报. 2023(04): 58-62+132-133 . 本站查看
    6. 张敏,雷龙宇,杜明科,张志强,高俊,郜雅彦,王博玉. 电弧沉积条件下Cu基熔覆层的微观组织及性能研究. 焊管. 2022(05): 16-21 .
    7. 陈彦龙,舒林森,宋少东. 304L/316异种钢薄板激光增材焊接工艺及性能研究. 激光与光电子学进展. 2022(23): 200-208 .
    8. 朱元皓,董红刚,吴宝生,郭柏征,李鹏. 液相分离对T2紫铜/316L不锈钢接头组织及性能的影响. 焊接学报. 2021(11): 14-21+89+97-98 . 本站查看

    Other cited types(2)

Catalog

    Article views (52) PDF downloads (14) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return