Advanced Search
ZHANG Jia, SHAO Peize, WANG Xinxin, HUANG Jiankang, FAN Ding. Method and technology of two TIG activating arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 62-69, 78. DOI: 10.12073/j.hjxb.20230730002
Citation: ZHANG Jia, SHAO Peize, WANG Xinxin, HUANG Jiankang, FAN Ding. Method and technology of two TIG activating arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 62-69, 78. DOI: 10.12073/j.hjxb.20230730002

Method and technology of two TIG activating arc additive manufacturing

More Information
  • Received Date: July 29, 2023
  • Available Online: June 23, 2024
  • To further enhance the high deposition efficiency advantage of wire and arc additive manufacturing, a new technology and method using a two TIG activating arc as the heat source was proposed. By introducing a small amount of activating gas O2 into the argon shielding gas, a thin-wall deposition experiment were conducted and fabricated using 1.2 mm diameter SUS304 austenitic stainless steel metal wire. The effects of oxygen added, deposition current distribution, arc travel speed, and wire feed speed on the average width and height of the deposited bead were studied. The microstructure and mechanical properties of the deposited components were also examined. The results indicate that, compared to the conventional TIG method, the two TIG activating arc additive manufacturing not only improves forming and increases deposition efficiency but also reduces the surface tension of the deposited metal and the molten pool, enhancing their wettability and spreading characteristics, thereby further improving the deposition layer formation. Under comparable current conditions, the deposition efficiency is significantly increased, reaching 2.7 kg/h, compared to the conventional TIG arc deposition. As the deposition current of the trailing torch increases (the leading torch deposition current decreases), the average width first increases and then decreases, while the average height shows an opposite trend. With the increase in arc travel speed, both the average width and height decrease. When the wire feed speed increases, the wall height significantly increases, while the width changes little. The introduction of O2 has no significant impact on the microstructure of the deposited thin-wall component, which is characterized by columnar dendrites perpendicular to the deposition direction. The tensile strength and elongation rate of the deposited thin-wall slightly decrease with the introduction of O2.

  • [1]
    Williams S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7): 641 − 647. doi: 10.1179/1743284715Y.0000000073
    [2]
    Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
    [3]
    Ouyang J H, Wang H, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: Process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17(1): 103 − 124. doi: 10.1081/AMP-120002801
    [4]
    Zhang Y M, Li P J, Chen Y W, et al. Automated system for welding-based rapid prototyping[J]. Mechatronics, 2002, 12(1): 37 − 53. doi: 10.1016/S0957-4158(00)00064-7
    [5]
    Mathisen M B, Eriksen L, Yingda Y U, et al. Characterization of microstructure and strain response in Ti–6Al–4V plasma welding deposited material by combined EBSD and in-situ tensile test[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3929 − 3943. doi: 10.1016/S1003-6326(14)63553-6
    [6]
    Shen C, Pan Z X, Cuiuri D, et al. Fabrication of Fe-FeAl functionally graded material using the wire-arc additive manufacturing process[J]. Metallurgical and Materials Transactions B, 2016, 47(1): 763 − 772. doi: 10.1007/s11663-015-0509-5
    [7]
    Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 968 − 977. doi: 10.1007/s11661-012-1444-6
    [8]
    Bai J Y, Fan C L, Yang C L, et al. Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9): 2615 − 2623.
    [9]
    Geng H B, Li J L, Xiong J T, et al. Optimization of wire feed for GTAW based additive manufacturing[J]. Journal of Materials Processing Technology, 2017, 243: 40 − 47. doi: 10.1016/j.jmatprotec.2016.11.027
    [10]
    Liu Z Y, He B, Lyu T, et al. A Review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V[J]. The Journal of the Minerals, Metals & Materials Society, 2021, 73(6): 1804 − 1818.
    [11]
    吴复尧, 刘黎明, 许沂, 等. 3D打印技术在国外航空航天领域的发展动态[J]. 飞航导弹, 2013(12): 10 − 15.

    Wu Furao, Liu Liming, Xu Yi, et al. Development trend of 3D printing technology in foreign aerospace field[J]. Aerodynamic Missile Journal, 2013(12): 10 − 15.
    [12]
    朱胜, 任智强, 殷凤良, 等. 水冷铜阳极法测量阳极等离子电弧力径向分布[J]. 中国表面工程, 2010, 23(5): 82 − 85. doi: 10.3969/j.issn.1007-9289.2010.05.016

    Zhu Sheng, Ren Zhiqiang, Yin Fengliang, et al. Measurement of radial distribution of plasma arc anode pressure by water-cooled copper anode method[J]. China Surface Engineering, 2010, 23(5): 82 − 85. doi: 10.3969/j.issn.1007-9289.2010.05.016
    [13]
    刘伟, 何景山, 吴庆生, 等. 电弧力对TIG焊接熔池液面形态影响的数值模拟[J]. 焊接学报, 2007, 28(7): 69 − 71. doi: 10.3321/j.issn:0253-360X.2007.07.018

    Liu Wei, He Jingshan, Wu Qingsheng, et al. Numerical simulation of effect of arc force on shape of liquid surface of TIG welding molten pool[J]. Transactions of the China Welding Institution, 2007, 28(7): 69 − 71. doi: 10.3321/j.issn:0253-360X.2007.07.018
    [14]
    Wang X X, Luo Y, Fan D. Investigation of heat transfer and fluid flow in high current GTA welding by a unified model[J]. International Journal of Thermal Sciences, 2019, 142: 20 − 29. doi: 10.1016/j.ijthermalsci.2019.04.005
    [15]
    Spaniol E, Ungethüm T, Trautmann M, et al. Development of a novel TIG hot-wire process for wire and arc additive manufacturing[J]. Welding in the World, 2020, 64(8): 1329 − 1340. doi: 10.1007/s40194-020-00871-w
    [16]
    Paskual A, Alvarez P, Suarez A. Study on arc welding processes for high deposition rate additive manufacturing[J]. Procedia Cirp, 2018, 68: 358 − 362.
    [17]
    Han Q L, Li D Y, Sun H J, et al. Forming characteristics of additive manufacturing process by twin electrode gas tungsten arc[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9): 4517 − 4526.
    [18]
    Yilmaz O, Ugla A A. Microstructure characterization of SS308LSi components manufactured by GTAW-based additive manufacturing: shaped metal deposition using pulsed current arc[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 13 − 25. doi: 10.1007/s00170-016-9053-y
    [19]
    王新鑫, 罗怡, 李春天, 等. 双TIG焊接电弧数值分析[J]. 热加工工艺, 2020, 49(7): 133 − 138.

    Wang Xinxin, Luo Yi, Li Chuntian, et al. Numerical simulation of two TIG welding arc[J]. Hot Working Technology, 2020, 49(7): 133 − 138.
    [20]
    Wang X X, Fan D, Huang J K, et al. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding[J]. Journal of Physics D: Applied Physics, 2014, 47(27): 275202. doi: 10.1088/0022-3727/47/27/275202
    [21]
    王新鑫, 迟露鑫, 许惠斌, 等. 双TIG电弧中氧传质行为的数值分析[J]. 机械工程学报, 2021, 57(4): 53 − 62. doi: 10.3901/JME.2021.04.053

    Wang Xinxin, Chi Luxin, Xu Huibin, et al. Numerical analysis of oxygen mass transfer in two-TIG arc[J]. Journal of Mechanical Engineering, 2021, 57(4): 53 − 62. doi: 10.3901/JME.2021.04.053
    [22]
    Sahoo P, Debroy T, McNallan M J. Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy[J]. Metallurgical Transactions B, 1988, 19(3): 483 − 491. doi: 10.1007/BF02657748
    [23]
    郭超. 双TIG活性电弧焊接工艺及焊缝成形机理研究[D]. 重庆: 重庆理工大学, 2022.

    Guo Chao. Research on activating two TIG arc welding and mechanism for weld formation[D]. Chongqing : Chongqing University of Technology, 2022.
    [24]
    刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002

    Liu Liming, He Yajing, Li Zongyu, et al. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. Transactions of the China Welding Institution, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002
    [25]
    Shankar V, Rao K B S, Mannan S L. Microstructure and mechanical properties of Inconel625 superalloy[J]. Journal of Nuclear Materials, 2001, 288(2-3): 222 − 232. doi: 10.1016/S0022-3115(00)00723-6
    [26]
    Chen X H, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing[J]. Materials Science and Engineering: A, 2017, 703: 567 − 577. doi: 10.1016/j.msea.2017.05.024
    [27]
    Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel[J]. Materials Science and Engineering: A, 2015, 644: 171 − 183. doi: 10.1016/j.msea.2015.07.056
    [28]
    Zhang J X, Huang Y Q, Fan D, et al. Microstructure and performances of dissimilar joints between 12Cr2Mo1R steel and 06Cr18Ni11Ti austenitic stainless steel joined by AA-TIG welding[J]. Journal of Manufacturing Processes, 2020, 60: 96 − 106. doi: 10.1016/j.jmapro.2020.10.048
    [29]
    Laghi V, Palermo M, Tonelli L, et al. Tensile properties and micro-structural features of 304L austenitic stainless steel produced by wire-and-arc additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9): 3693 − 3705.
  • Related Articles

    [1]XIA Weisheng, GONG Fujian, YANG Rongguo, WAN Chaizhi, YANG Yunzhen. Apparent defect recognition of gas metal arc welding based on infrared vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 69-73. DOI: 10.12073/j.hjxb.20190928001
    [2]GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36.
    [3]ZHANG Hongjie, HOU Yanyan. Quality estimation of resistance spot welding based on kernel fisher discriminant analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 105-108.
    [4]LIU Lijun, LAN Hu, ZHENG Hongyan. Feature evaluation and selection of penetration arc sound signal based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 25-28.
    [5]GONG Yefei, DAI Xianzhong, LI Xinde. Robust joint recognition with structured-light vision sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 85-88.
    [6]YUN Shao-hui, ZHANG De-qin, HAN Guo-ming. Pattern recognition of spectrum information of metal transfer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 21-24.
    [7]WANG Jian-jun, YANG Xue-qin, LIN Tao, CHEN Shan-ben. Pattern Recognition of Top-Side Pool Image in Aluminum Alloy TIG Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 73-76.
    [8]HAN Guo-ming, YUN Shao-hui, LI Jun-yue. Automatic Recognition Software System for Metal Transfer of the Metal Gas Arc Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 19-23.
    [9]Li Wushen, Zhou Nianguo, Chen Yu, Zhang Bingfan. Automatic Quantitative Recognition Software System for Microstructure of Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (1): 62-67.
    [10]Zhou Wei, Wang Chengxun. Research and Application of automatic recognition system to weld defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 45-50.
  • Cited by

    Periodical cited type(2)

    1. 李志刚,徐翔,李洋,黄卫. 水下湿法焊接引弧过程等离子体温度及电子数密度研究. 光谱学与光谱分析. 2020(11): 3404-3408 .
    2. 王子然,张善保,杨战利,杨义成. 间隙对GMAW立焊熔滴过渡的影响及温度场特性. 焊接学报. 2019(05): 89-94+165 . 本站查看

    Other cited types(3)

Catalog

    Article views (143) PDF downloads (62) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return