Advanced Search
YANG Jinghong, LIU Jiakun, WEI Wenqing, YE Chaochao, LIU Yongsheng, ZHANG Lixia, LIU Qiming. Interfacial microstructure and properties of diffusion bonded joints of Ti3AlC2 ceramic and Ni[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 103-109. DOI: 10.12073/j.hjxb.20230914001
Citation: YANG Jinghong, LIU Jiakun, WEI Wenqing, YE Chaochao, LIU Yongsheng, ZHANG Lixia, LIU Qiming. Interfacial microstructure and properties of diffusion bonded joints of Ti3AlC2 ceramic and Ni[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 103-109. DOI: 10.12073/j.hjxb.20230914001

Interfacial microstructure and properties of diffusion bonded joints of Ti3AlC2 ceramic and Ni

More Information
  • Received Date: September 13, 2023
  • Available Online: June 17, 2024
  • The Ti3AlC2 ceramic and Ni were successfully joined by diffusion bonding technique. The microstructure and element distribution of the joint were analyzed by SEM and TEM. The diffusion mechanism of Ni and the forming mechanism of joint were investigated. The results show that the enrichment of Ni elements adjacent to the Ti3AlC2 ceramic led to a diffusion in the interface, which could promote the formation of joint. The typical interfacial microstructure of the Ni/Ti3AlC2 ceramic joint obtained at 900 ℃ for 60 min is Ni/Ni3(Al,Ti)+AlNi2Ti+TiC/Ti3AlC2 ceramic. It was found that the shear strength of the joint increased with increasing bonding temperature. When the temperature further elevated, the shear strength dramatically decreased. The maximum shear strength is 94.4 MPa at 900 ℃ for 60 min.

  • [1]
    Lapauw T, Halim J, Lu J, et al. Synthesis of the novel Zr3AlC2 MAX phase[J]. Journal of the European Ceramic Society, 2016, 36(3): 943 − 947.
    [2]
    Barsoum M W, El-Raghy T. The MAX phases: unique new carbide and nitride materials[J]. American Scientist, 2001, 89(4): 334 − 343. doi: 10.1511/2001.28.334
    [3]
    Pietzka M A, Schuster J C. Summary of constitutional data on the Al-C-Ti system[J]. Journal of Phase Equilibria, 1994, 15(4): 392 − 400. doi: 10.1007/BF02647559
    [4]
    Nikolay V, Tzenov W, Barsoum M. Synthesis and characterization of Ti3AlC2[J]. Journal of the American Ceramic Society, 2000, 83(4): 825 − 832. doi: 10.1111/j.1151-2916.2000.tb01281.x
    [5]
    Wang X, Zhou Y. Solid–liquid reaction synthesis of layered machinable Ti3AlC2 ceramic[J]. Journal of Materials Chemistry, 2002, 12(3): 455 − 460. doi: 10.1039/b108685e
    [6]
    Pshyk A V, Coy E, Kempiński M, et al. Low-temperature growth of epitaxial Ti2AlC MAX phase thin films by low-rate layer-by-layer PVD[J]. Materials Research Letters, 2019, 7(6): 244 − 250. doi: 10.1080/21663831.2019.1594428
    [7]
    Basu S, Ozaydin M F, Kothalkar A, et al. Phase and morphology evolution in high-temperature Ti3SiC2-NiTi diffusion-bonded joints[J]. Scripta Materialia, 2011, 65(3): 237 − 240. doi: 10.1016/j.scriptamat.2011.04.015
    [8]
    张华, 翟洪祥, 黄振莺. Ti3AlC2与Cu合金的电弧焊接[C]//全国高技术陶瓷学术年会, 2008, 73 − 75.

    Zhang Hua, Zhai Hongxiang , Huang Zhenying . Arc welding of Ti3AlC2 and Cu alloy [C]//National High tech Ceramic Academic Annual Conference, 2008, 73 − 75.
    [9]
    Wang G C, Zhang J, Liu X W. Characterizing the decomposition of Ti2AlC during its brazing with Cu by using Ag-Cu filler alloy[J]. Materials Science Forum, 2013, 762: 607 − 611. doi: 10.4028/www.scientific.net/MSF.762.607
    [10]
    王颖, 夏永红, 杨振文, 等. Ti3SiC2陶瓷与TC4合金钎焊接头微观组织及性能[J]. 稀有金属材料与工程, 2019(9): 3041 − 3047.

    Wang Ying, Xia Yonghong, Yang Zhenwen, et al. Interfacial microstructure and properties of brazed joints of Ti3SiC2 ceramic and TC4 alloy[J]. Rare Metal Materials and Engineering, 2019(9): 3041 − 3047.
    [11]
    Zhang J, Wang G C, Zheng Y. Effect of Sn content on the microstructure, mechanical and electrical properties of Ti2AlC/Cu joints brazed with Cu-Sn-Ti filler alloy[J]. Materials Science Forum, 2013, 762(5): 602 − 606.
    [12]
    Li A, Zhou Y. Joining of Ti3SiC2 by magnetron sputtering a layer of Cu or Zr followed by heat treating at relatively low temperatures[J]. Journal of the American Ceramic Society, 2011, 94(9): 3072 − 3077. doi: 10.1111/j.1551-2916.2011.04566.x
    [13]
    Yin X H, Zhou Y C. Direct diffusion bonding of Ti3SiC2 and Ti3AlC2[J]. Materials Research Bulletin, 2009, 44(6): 1379 − 1384. doi: 10.1016/j.materresbull.2008.12.002
    [14]
    Yin X H, Zhou Y C. Diffusion bonding of Ti3AlC2 ceramic via a Si interlayer[J]. Journal of Materials Science, 2007, 42(17): 7081 − 7085. doi: 10.1007/s10853-006-1491-8
    [15]
    Yin X H, Li M S, Zhou Y C. Microstructure and mechanical strength of transient liquid phase bonded Ti3SiC2 joints using Al interlayer[J]. Journal of the European Ceramic Society, 2007, 27: 3539 − 3544. doi: 10.1016/j.jeurceramsoc.2007.01.012
    [16]
    Tan J, Han H, Wickramaratne D, et al. A comparative first-principles study of the electronic, mechanical, defect and acoustic properties of Ti2AlC and Ti3AlC[J]. Journal of Physics D-Applied Physics, 2014, 47(21): 2153011 − 2153018.
    [17]
    Hone J, Batlogg B, Benes Z, et al. Quantized phonon spectrum of single-wall carbon nanotubes[J]. Science, 2000, 289(5485): 1730 − 1733. doi: 10.1126/science.289.5485.1730
    [18]
    Konar A, Pandey Rajan K, Ethirajan Tamilmani. Carrier transport in layered nanolaminated carbides[J]. Physics, 2015, 122(15): 1 − 7.
    [19]
    Wilhelmsson O, Palmquist J P, Lewin E, et al. Deposition and characterization of ternary thin films within the Ti-Al-C system by DC magnetron sputtering[J]. Journal of Crystal Growth, 2007, 291(1): 290 − 300.
    [20]
    Witusiewicz V T, Hallstedt B, Bondar A A, et al. Thermodynamic description of the Al-C-Ti system[J]. Journal of Alloys & Compounds, 2015, 623(25): 480 − 496.
  • Related Articles

    [1]GUO Zhongfeng, LIU Junchi, YANG Junlin. Weld recognition based on key point detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 88-93. DOI: 10.12073/j.hjxb.20230204001
    [2]WANG Wenchao, GAO Xiangdong, DING Xiaodong, ZHANG Nanfeng. Detection of non-groove butt joint feature based on corner principle[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 61-64. DOI: 10.12073/j.hjxb.2018390225
    [3]LE Jian, ZHANG Hua, YE Yanhui, WANG Shuai. Tracking of fillet weld with small bending angle and detecting of weld seam endpoint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 21-25.
    [4]HONG Bo, LIU Jian, HONG Yuxiang, WANG Qian. Study on deviation prediction of seam tracking using magnetron rotating arc sensor with Kalman filter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 55-58.
    [5]GAO Xiangdong, LIU Yonghua. Detection of micro-gap seam offset based on wavelet transformation during high-power fiber laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 1-4.
    [6]ZHANG Wanjiang, XU Min. Curvature scale space-based boundary points detection of weld seam of tailored blanks laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 93-96.
    [7]GAO Xiangdong, MO Ling, YOU Deyong, KATAYAMA Seiji. Prediction algorithm of weld seam deviation based on RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 1-4.
    [8]GAO Xiang-dong, CHEN Zhang-lan, CHEN Yong-ping. A new approach to detect weld seam based on offset-distance arithmetic of welding colorimetry image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 13-16,20.
    [9]LIANG Zhi-min, GAO Hong-ming, WANG Zhi-jiang, WU Lin. Sub-pixels corner detection for camera calibration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 102-104.
    [10]ZHANG Hua, HU Jing, ZOU Chun-hua, PENG Shao-bin. Integrated intelligent system for welding seam error and penetration depth identification[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 51-54.
  • Cited by

    Periodical cited type(1)

    1. 王晨,雷正龙,宋文清,杨烁,李旭东. CoCrW与T800焊丝对DZ125高温合金表面激光熔覆耐磨层组织及性能的影响. 中国激光. 2025(04): 101-109 .

    Other cited types(3)

Catalog

    Article views (94) PDF downloads (49) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return