Citation: | GUO Zhongfeng, LIU Junchi, YANG Junlin. Weld recognition based on key point detection method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 88-93. DOI: 10.12073/j.hjxb.20230204001 |
In order to ensure the quality of automatic welding and improve the accuracy and adaptability of weld identification, a key point detection method for weld feature extraction is proposed. A weld feature extraction network was designed based on the convolutional neural network. The network extracted weld feature by convolution and pool operation. The feature map from deep layer is sampled up, and then the feature map from deep layer and shallow layer are fused to improve the accuracy of weld feature extraction. The feature point position of weld seam is predicted by the thermal image of weld seam, and the recognition and location of many kinds of groove weld seam are realized, and eliminating the need for non-maximum suppression algorithm, which improves the feature extraction speed. The network model is trained by collecting different weld feature images. The experimental results show that the root mean square error of weld feature point location is 0.187 mm. The network model designed in this research has high detection accuracy in the weld feature point recognition task, and has strong adaptability and generalization, and meets the requirements of automatic welding.
[1] |
郭吉昌, 朱志明, 于英飞, 等. 焊接领域激光结构光视觉传感技术的研究及应用[J]. 中国激光, 2017, 44(12): 2 − 6.
Guo Jichang, Zhu Zhiming, Yu Yingfei, et al. Research and application of visual sensing technology based on laser structured light in welding industry[J]. Chinese Journal of Lasers, 2017, 44(12): 2 − 6.
|
[2] |
陈新禹, 张庆新, 朱琳琳, 等. 基于激光视觉传感器的机器人实时焊缝跟踪方法[J]. 激光与红外, 2021, 51(4): 421 − 427. doi: 10.3969/j.issn.1001-5078.2021.04.004
Chen Xinyu, Zhang Qingxin, Zhu Linlin, et al. The method of real time seam tracking for robotic welding system based on laser vision sensor[J]. Laser & Infrared, 2021, 51(4): 421 − 427. doi: 10.3969/j.issn.1001-5078.2021.04.004
|
[3] |
雷正龙, 沈健雄, 黎炳蔚, 等. 基于自动阈值的窄间隙端接焊缝识别技术[J]. 光学学报, 2018, 38(8): 4 − 6.
Lei Zhenglong, Shen Jianxiong, Li Bingwei, et al. Recognition of narrow-gap edge welding seam based on autonomous threshold value[J]. Acta Optica Sinica, 2018, 38(8): 4 − 6.
|
[4] |
余佳杰, 周建平, 薛瑞雷, 等. 基于结构光视觉和光照模型的焊缝表面质量检测[J]. 中国激光, 2022, 49(16): 2 − 4.
Yu Jiajie, Zhou Jianping, Xue Ruilei, et al. Weld surface quality detection based on structured light and illumination model[J]. Chinese Journal of Lasers, 2022, 49(16): 2 − 4.
|
[5] |
Li G, Hong Y, Gao J, et al. Welding seam trajectory recognition for automated skip welding guidance of a spatially intermittent welding seam based on laser vision sensor[J]. Sensors, 2020, 20(13): 36 − 57.
|
[6] |
Zhang G, Zhang Y, Tuo S, et al. A novel seam tracking technique with a Four-Step method and experimental investigation of robotic welding oriented to complex welding seam[J]. Sensors, 2021, 21(9): 30 − 67.
|
[7] |
Tian Y Z, Liu H F, Li L, et al. Robust identification of weld seam based on region of interest operation[J]. Advances in Manufacturing, 2020, 8(4): 473 − 485. doi: 10.1007/s40436-020-00325-y
|
[8] |
朱齐丹, 王彦柯, 朱伟, 等. 基于结构光的焊点智能识别算法设计[J]. 焊接学报, 2019, 40(7): 82 − 87. doi: 10.12073/j.hjxb.2019400186
Zhu Qidan, Wang Yanke, Zhu Wei, et al. Intelligent recognition algorithm of welding point based on structured light[J]. Transactions of the China Welding Institution, 2019, 40(7): 82 − 87. doi: 10.12073/j.hjxb.2019400186
|
[9] |
陈凯, 王海. 基于深度学习的焊缝图像识别研究[J]. 安徽工程大学学报, 2022, 37(1): 24 − 31.
Chen Kai, Wang Hai. Research on weld Image recognition based on deep learning[J]. Journal of Anhui Polytechnic University, 2022, 37(1): 24 − 31.
|
[10] |
杨国威, 周楠, 杨敏, 等. 融合卷积神经网络和相关滤波的焊缝自动跟踪[J]. 中国激光, 2021, 48(22): 3 − 6.
Yang Guowei, Zhou Nan, Yang Min, et al. Automatic weld tracking based on convolution neural network and correlation filter[J]. Chinese Journal of Lasers, 2021, 48(22): 3 − 6.
|
[11] |
唐溪, 姚锡凡, 董艺, 等. 基于改进CenterNet的焊缝起始向量检测与机器人位姿估计方法[J]. 计算机集成制造系统, 2022, 28(9): 2865 − 2880.
Tang Xi, Yao Xifan, Dong Yi, et al. Weld initial vector detection and robot pose estimation based on improved centerNet[J]. Computer Integrated Manufacturing Systems, 2022, 28(9): 2865 − 2880.
|
[12] |
郭鹏飞. 基于深度学习的焊缝识别及路径生成系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
Guo Pengfei. Research on welding seam detection and path generation system based on deep learning[D]. Harbin: Harbin Institute of Technology, 2020.
|
[13] |
刘欢, 吴亮红, 张侣, 等. 基于特征双融合CenterNet的白细胞检测方法[J]. 计算机应用, 2023, 43(8): 2602 − 2610.
Liu Huan, Wu Lianghong, Zhang Lü, et al. Leukocyte detection method based on twica-fusion-feature CenterNet[J]. Journal of Computer Applications, 2023, 43(8): 2602 − 2610.
|
[14] |
Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5693 − 5703.
|
[15] |
Hei Law, Jia Deng. CornerNet: detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3): 642 − 656. doi: 10.1007/s11263-019-01204-1
|
[16] |
倪涛, 张泮虹, 李文航, 等. 基于关键点预测的装配机器人工件视觉定位技术[J]. 农业机械学报, 2022, 53(6): 443 − 450.
Ni Tao, Zhang Panhong, Li Wenhang, et al. Research on visual positioning technology of assembly robot workpiece based on prediction of key points[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 443 − 450.
|
[17] |
李昱. 基于结构光的焊接机器人焊缝图像识别算法研究[D]. 长春: 长春工业大学, 2022.
Li Yu. Research on image recognition algorithm for welding seam of welding robot based on structured light[D]. Changchun: Changchun University of Technology, 2022.
|
[1] | XIU Zijin, ZHANG Penghao, ZHANG Wenwu, WANG Xiuqi, JI Hongjun. Microstructural characteristics and properties of Cu@Ag NPs interconnect joints fabricated via ultrasound-assisted sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 28-34. DOI: 10.12073/j.hjxb.20230613013 |
[2] | WANG Xujian, TAN Caiwang, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr /Inconel 625 laser welding joints on HEPS storage ring vacuum box[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 35-40. DOI: 10.12073/j.hjxb.20220204002 |
[3] | WANG Xujian, TAN Caiwang, GUO Dizhou, FAN Chenglei, DONG Haiyi, SONG Hong. Microstructure and mechanical properties of CuCrZr/316LN laser welding joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 123-128. DOI: 10.12073/j.hjxb.20220304001 |
[4] | HOU Jinbao, ZHAO Lei. Analysis on the interface microsctruture and property of SiCf/SiCand MX246A brazing joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 74-78. DOI: 10.12073/j.hjxb.20201222001 |
[5] | SONG Zhihua, WU Aiping, YAO Wei, ZOU Guisheng, REN Jialie, WANG Yongyang. Influence of laser offset on microstructure and mechanical properties of Ti/Al dissimilar joint by laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 105-108. |
[6] | RAN Guowei, SONG Yonglun, YAN Sibo, LIN Jiangbo. Welding process and joint properties of hybrid welding on 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 25-29. |
[7] | WANG Min, WU Yixiong, PAN Hua, LEI Ming. Effect of base metal chemical composition on properties of resistance spot welding joint of DP590 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 33-35. |
[8] | FENG Yuehai, JIN Qiu, WANG Kehong, GU Minle. Microstructure and properties of middle thickness sheet welded joint for high strength alloy steel with Tandem GMAW system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 51-54. |
[9] | FENG Yuehai, WANG Kehong, WANG Jianping, GU Minle. Welding technology and microstructure and properties of welded joint of high strength and hardness alloy steel for tandem GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 97-100. |
[10] | WU Shikai, YANG Wuxiong, DONG Peng, XIAO Rongshi. Microstructure and properties of welded joint for narrow gap laser welding of 42CrMo steel bevel gear shaft[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 25-28. |
1. |
崔健伟,张鹏,王立新,聂新宇,李建国,邹运,董悦雷. 层间温度对GMA电弧增材制造不锈钢显微组织和力学性能的影响. 焊管. 2025(01): 35-40+49 .
![]() | |
2. |
陈大林,宋学平,赵青山,高晓菲. 激光功率对CMT电弧增材制造316L不锈钢组织与性能的影响. 电焊机. 2025(02): 39-45 .
![]() | |
3. |
王梦真,万占东,林健. 电弧增材制造工艺及数值仿真研究进展. 大型铸锻件. 2024(01): 7-12 .
![]() | |
4. |
李敬勇,李超然,徐育烺,钱鹏. 层间温度对CMT电弧增材制造2Cr13不锈钢薄壁件成形及组织和性能影响. 焊接. 2024(02): 43-50 .
![]() | |
5. |
黄佳蕾,陈菊芳,姜宇杰,李小平,雷卫宁. TIG电弧增材制造308L不锈钢的显微组织与力学性能分析. 热加工工艺. 2023(01): 38-42+47 .
![]() | |
6. |
王德伟,鲍正浩. 激光选区增材制造420不锈钢件的组织及力学性能. 焊接技术. 2023(02): 1-4+113 .
![]() | |
7. |
吴随松,郭纯,刘武猛,营梦,李云. ER316L不锈钢电弧增材制造的组织与性能分析. 新余学院学报. 2023(02): 10-18 .
![]() | |
8. |
赵阳,范若兰,刘玉锋,王震. 丝材电弧增材制造技术制备316L不锈钢的力学性能. 建筑结构学报. 2023(08): 207-216 .
![]() | |
9. |
樊世冲,殷凤仕,任智强,韩国峰,付华,刘亚凡,王鸿琪,鲁克锋,孙金钊,王文宇. 基于电弧的多能场复合增材制造技术研究现状. 表面技术. 2023(08): 49-70 .
![]() | |
10. |
王强,王磊磊,高转妮,杨兴运,占小红. 快速电弧模式增材制造316L不锈钢组织与性能. 焊接学报. 2023(10): 86-93+137-138 .
![]() | |
11. |
李学军,朱平,尚建路,王龙,陈亮. 电弧增材制造的核级316L不锈钢组织及腐蚀性能研究. 热加工工艺. 2023(19): 24-27 .
![]() | |
12. |
齐善根,谭振,李建一,王及匀,王立伟,BALAJI Narayanaswamy. Al-Mg-Si合金电弧增材制造工艺参数与性能研究. 金属加工(热加工). 2023(12): 25-31 .
![]() | |
13. |
李宁,刘少龙,丁雪松,徐雨红,范文磊,苏焕朝,王博玉. 不同工艺参数下0Cr18Ni9钢薄壁管脉冲钨极氩弧焊接头的组织与拉伸性能. 机械工程材料. 2022(02): 58-62 .
![]() | |
14. |
何鹏,柏兴旺,周祥曼,张海鸥. MIG电弧增材制造6061铝合金的组织和性能. 焊接学报. 2022(02): 50-54+60+116-117 .
![]() | |
15. |
徐海涛,燕春光,张舒展,史显波,严伟,姜海昌. 奥氏体不锈钢中液析碳化物在高温均匀化过程中的演化. 压力容器. 2022(04): 9-16 .
![]() | |
16. |
陈晔,姚屏,郑振兴,宾坤,陈美沂. 双脉冲MIG焊工艺参数对316L不锈钢焊缝成形及性能影响研究. 自动化与信息工程. 2022(03): 1-6+14 .
![]() | |
17. |
赵东升,龙代发,牛堂仁,胡鑫,刘玉君. 316L不锈钢电弧增材制造的微观组织和力学性能. 船舶工程. 2022(09): 14-17+88 .
![]() | |
18. |
王卫军,郭紫威,代孝红,王鑫. 汽车液压油缸316L不锈钢复合增材工艺及性能研究. 应用激光. 2022(12): 59-65 .
![]() | |
19. |
李宗玉,张兆栋,贺雅净,王旭,原思宇,刘黎明. 316不锈钢低功率脉冲激光诱导TIG电弧增材制造组织研究. 焊接技术. 2021(05): 8-12 .
![]() | |
20. |
张兆栋,何胜斌,王奇鹏,靳佩昕,刘黎明. 电弧增材制造工艺方法、增材焊料及后处理的研究现状. 电焊机. 2021(08): 1-10+176 .
![]() | |
21. |
杨义成,陈健,黄瑞生,徐锴,孙谦,杜兵. 空心钨极焊接关键技术问题及发展现状. 焊接. 2021(05): 1-8+63 .
![]() | |
22. |
张心保,王志斌,纪平,赵振铎,范光伟. 奥氏体不锈钢中微量元素致焊接缺陷实例分析. 焊接. 2021(05): 47-51+66 .
![]() | |
23. |
刘黎明,贺雅净,李宗玉,张兆栋. 不同路径下316不锈钢电弧增材组织和性能. 焊接学报. 2020(12): 13-19+97-98 .
![]() |