Citation: | WU Kangwei, CHEN Yi, CHENG Guowen, LIU Qiang, LIN Tiesong, HUANG Yongde. Impact of copper-coated CNT content on the fatigue resistance of copper-based composite films[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 99-105. DOI: 10.12073/j.hjxb.20230906003 |
In order to enhance the fatigue resistance of copper-based flexible thin films, copper-coated carbon nanotubes (CNTs) were incorporated into the ink formulation to prepare copper-based composite films, with a focus on analyzing the influence of copper-coated CNTs content on the microstructure and fatigue resistance of the composite films. The impact of copper-coated CNTs content on the microstructure and fatigue resistance of the composite films was emphasized and examined. The results indicated that when the copper-coated CNTs content was 1%, a highly conductive and fatigue-resistant copper-based composite film was obtained, with a resistivity of 17.73 μΩ·cm and the resistance change rate of 49%. This was attributed to the copper-coated CNTs being connected within the interstices of the copper structure, thereby serving as additional conductive pathways that improved conductivity. And it prevents dislocation movement at grain boundaries, delays crack propagation, suppresses the formation of sintering necks, and improves the fatigue resistance of composite films. Due to the minimal interfacial difference between the copper-coated CNTs and the copper matrix, diffusion occurs to the matrix surface during sintering. This results in a reduction of the surface area of the matrix, leading to the precipitation of copper particles. When the content of copper-coated CNTs increases to 2%, the volume and number of copper particles increase, causing a deterioration in the continuity of the microstructure. Consequently, this reduces the electrical conductivity and fatigue resistance of the composite film. Therefore, an appropriate amount of copper-coated CNTs can enhance the electrical conductivity and fatigue resistance of the composite film.
[1] |
Jin H, Abu-Raya Y S, Haick H. Advanced materials for health monitoring with skin-based wearable devices[J]. Advanced Healthcare Materials, 2017, 6(11): 1700024. doi: 10.1002/adhm.201700024
|
[2] |
Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240 − 245. doi: 10.1038/s41586-021-03295-8
|
[3] |
刘晓琴, 苏晓磊, 刘新峰, 等. 高温铜电子浆料的制备及性能研究[J]. 电子元件与材料, 2015, 34(1): 32 − 35.
Liu Xiaoqin, Su Xiaolei, Liu Xinfeng, et al. Preparation and performance study of high-temperature copper electronic paste[J]. Electronic Components and Materials, 2015, 34(1): 32 − 35.
|
[4] |
李冰, 苏晓磊, 王俊勃, 等. 低温铜电子浆料的制备及性能研究[J]. 化工新型材料, 2014, 42(12): 71 − 74.
Li Bing, Su Xiaolei, Wang Junbo, et al. Preparation and performance study of low-temperature copper electronic paste[J]. New Chemical Materials, 2014, 42(12): 71 − 74.
|
[5] |
刘博扬, 王冉冉, 孙静. 可视化柔性可穿戴传感器研究进展[J]. 化学分析, 2023(3): 305 − 315.
Liu Boyang, Wang Ranran, Sun Jing. Research progress on visualized flexible wearable sensors[J]. Chinese Journal of Analytical Chemistry, 2023(3): 305 − 315.
|
[6] |
Deng D, Qi T, Cheng Y, et al. Copper carboxylate with different carbon chain lengths as metal–organic decomposition ink[J]. Journal of Materials Science: Materials in Electronics, 2014, 25: 390 − 397. doi: 10.1007/s10854-013-1599-y
|
[7] |
Li W, Yang Y, Zhang B, et al. Highly densified Cu wirings fabricated from air-stable Cu complex ink with high conductivity, enhanced oxidation resistance, and flexibility[J]. Advanced Materials Interfaces, 2018, 5(19): 1800798. doi: 10.1002/admi.201800798
|
[8] |
Yu J, Lin Z, Xue WD, et al. Fabrication of superaligned carbon nanotubes reinforced copper matrix laminar composite by electrodeposition[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 2994 − 3001. doi: 10.1016/S1003-6326(15)63926-7
|
[9] |
Koti V, Singh K K, Singh R K. Experimental and statistical investigation on the wear and hardness behaviour of multiwalled carbon nanotubes reinforced copper nanocomposites[J]. Wear, 2022, 500: 204368.
|
[10] |
吴键, 邵国森, 何代华, 等. 碳纳米管增强铝基复合材料的制备及力学性能研究[J]. 有色金属材料与工程, 2022, 43(1): 11 − 17.
Wu Jian, Shao Guosen, He Daihua, et al. Preparation and mechanical property study of carbon nanotube reinforced aluminum matrix composites[J]. Nonferrous Metal Materials and Engineering, 2022, 43(1): 11 − 17.
|
[11] |
蒋太炜. 高能球磨法制备 CNTs/Cu 复合材料 [D]. 昆明;昆明理工大学, 2012.
Jiang Taiwei. Preparation of CNTs/Cu composites by high-energy ball milling [D]. Kunming; Kunming University of Science and Technology, 2012.
|
[12] |
Sundaram R M, Sekiguchi A, Sekiya M, et al. Copper/carbon nanotube composites: research trends and outlook[J]. Royal Society open science, 2018, 5(11): 180814. doi: 10.1098/rsos.180814
|
[13] |
亓钧雷, 万禹含, 张丽霞, 等. 碳纳米管增强TiNi复合钎料的制备与表征[J]. 焊接学报, 2014, 35(3): 27 − 30.
Qi Junlei, Wan Yuhan, Zhang Lixia, et al. Preparation and characterization of carbon nanotube reinforced TiNi composite brazing filler metals[J]. Transactions of the China Welding Institution, 2014, 35(3): 27 − 30.
|
[14] |
Tu J P, Yang Y Z, Wang L Y, et al. Tribological properties of carbon-nanotube-reinforced copper composites[J]. Tribology Letters, 2001, 10: 225 − 228. doi: 10.1023/A:1016662114589
|
[15] |
祝儒飞, 郭宏, 尹法章, 等. 纳米碳纤维表面化学镀铜的研究[J]. 稀有金属, 2010(4): 552 − 556. doi: 10.3969/j.issn.0258-7076.2010.04.015
Zhu Rufei, Guo Hong, Yin Fazhang, et al. Study on the surface chemical copper plating of carbon nanofibers[J]. Rare Metals, 2010(4): 552 − 556. doi: 10.3969/j.issn.0258-7076.2010.04.015
|
[16] |
彭刚, 蔡晓兰, 周蕾, 等. 粉末冶金 CNTs/Cu 复合材料的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2016, 21(1): 129 − 136. doi: 10.3969/j.issn.1673-0224.2016.01.018
Peng Gang, Cai Xiaolan, Zhou Lei, et al. Microstructure and mechanical properties of CNTs/Cu composites by powder metallurgy[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(1): 129 − 136. doi: 10.3969/j.issn.1673-0224.2016.01.018
|
[17] |
Li W, Sun Q, Li L, et al. The rise of conductive copper inks: challenges and perspectives[J]. Applied Materials Today, 2020, 18: 100451. doi: 10.1016/j.apmt.2019.100451
|
[18] |
Joo S J, Park S H, Moon C J, et al. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5674 − 5684.
|
[19] |
Alig I, Pötschke P, Lellinger D, et al. Establishment, morphology and properties of carbon nanotube networks in polymer melts[J]. Polymer, 2012, 53(1): 4 − 28. doi: 10.1016/j.polymer.2011.10.063
|
[20] |
Hwang H J, Joo S J, Kim H S. Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25413 − 25423.
|
[21] |
Joo S J, Hwang H J, Kim H S. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics[J]. Nanotechnology, 2014, 25(26): 265601. doi: 10.1088/0957-4484/25/26/265601
|
[22] |
Zhan L, Zhu X, Qin X, et al. Sintering mechanism of copper nanoparticle sphere-plate of crystal misalignment: A study by molecular dynamics simulations[J]. Journal of Materials Research and Technology, 2021, 12: 668 − 678. doi: 10.1016/j.jmrt.2021.03.029
|
[1] | LI Huan, ZHOU Kang, ZHANG Jinzhou, YANG Xiong, CAO Biao. Influence of process parameters on microstructure and mechanical properties in high power ultrasonic welding of Cu/Al[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 20-25. DOI: 10.12073/j.hjxb.20191029002 |
[2] | XUE Hongyu, LONG Weimin, JIU Yongtao, CHENG Zhan, HUANG Guoqin, ZHANG Fenglin. Microstructure and mechanical properties of aluminum/AlSiNi/steel joint by induction brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 45-49. DOI: 10.12073/j.hjxb.20190128001 |
[3] | ZHANG Man1, ZHANG Jun1, JIANG Teng1, ZHANG Lincai2, YANG Dachun1, HOU Yu1, WU Jing1. Effect of Fe-Al intermetallic compound on mechanical property of aluminum/steel brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 61-64. DOI: 10.12073/j.hjxb.2018390014 |
[4] | QIU Xiliang, WANG Qian, LIN Tiesong, HE Peng, LU Fengjiao. Effect of Al18B4O33 whiskers on microstructure evolution of intermetallic compound layer and shear behavior of soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 35-38. |
[5] | QIN Fei, AN Tong, ZHONG Weixu, LIU Chengyan. Nanoindentation properties of intermetallic compounds in lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 25-28,32. |
[6] | LV Shixiong, JING Xiaojun, HUANG Yongxian, CHENG Jinli, ZHENG Chuanqi. Interfacial characteristic and property of Ti/Al dissimilar alloys joint with arc welding-brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 23-26. |
[7] | TAI Feng, GUO Fu, SHEN Hao, Han Mengting. Effect of heating rate on microstructure and mechanical properties of composite solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 79-82. |
[8] | ZHANG De-ku, ZOU Gui-sheng, WU Ai-ping, LIU Gen-mao. Effect of Ti on the micro structures and properties of ceramic bonded joints with in term etallic compounds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 9-11. |
[9] | SUO Jin ping, FENG Di, LUO He li, CUI Kun. Microstructure and properties of intermetallic composites fabricated by surdfacing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 44-47. |
[10] | Sun Daqian, Zhou Zhenfeng, Ren Zhenan. Microstructure and Mechanical Properties of Austempered Ductile Iron Welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 202-207. |
1. |
张亮亮,刘致远,剡晓旭. 轴肩构型对6082铝合金搅拌摩擦焊温度场的影响. 甘肃高师学报. 2024(05): 23-27 .
![]() | |
2. |
杨新岐,元惠新,孙转平,闫新中,赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能. 材料工程. 2022(07): 128-138 .
![]() | |
3. |
闫新中,杨新岐,唐文珅,赵慧慧,郭立杰. 2A14厚板铝合金SSFSW角焊缝接头组织及性能. 机械工程学报. 2022(22): 186-197 .
![]() | |
4. |
赖鸥,谭元冰,胡伟,马蓉. 铝合金搅拌摩擦焊与双轴肩搅拌摩擦焊接接头疲劳性能对比试验. 新型工业化. 2019(03): 54-57 .
![]() | |
5. |
郝云飞,马建波,毕煌圣,李超,王国庆. 铝合金T形接头静止轴肩搅拌摩擦焊接及组织性能分析. 焊接学报. 2019(07): 48-54+163 .
![]() | |
6. |
曾申波,陈高强,张弓,史清宇. T形接头角接静轴肩搅拌摩擦焊三维流动特征. 焊接学报. 2019(12): 1-5+161 .
![]() | |
7. |
张华,赵常宇,林三宝,石功奇. 7050-T7451铝合金静轴肩搅拌摩擦焊接头组织与性能研究. 焊接. 2018(09): 5-9+65 .
![]() |