Advanced Search
WANG Ruiping, XIAO Zonglin, YANG Xu, WANG Zeming, WANG Ying, YANG Zhenwen. Microstructures and properties of Zr-4 alloy diffusion bonding joint with Nb interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 33-40. DOI: 10.12073/j.hjxb.20230720001
Citation: WANG Ruiping, XIAO Zonglin, YANG Xu, WANG Zeming, WANG Ying, YANG Zhenwen. Microstructures and properties of Zr-4 alloy diffusion bonding joint with Nb interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 33-40. DOI: 10.12073/j.hjxb.20230720001

Microstructures and properties of Zr-4 alloy diffusion bonding joint with Nb interlayer

More Information
  • Received Date: July 19, 2023
  • Available Online: June 07, 2024
  • To improve the strength of Zr-4 alloy diffusion bonding joints and reduce the effective bonding temperature, different thicknesses of Nb interlayer were used for the Zr-4 alloy diffusion bonding at 760 °C/30 min/7 MPa. The effect of the Nb interlayer and its thickness variation on the microstructures and properties of the joints was investigated. During the diffusion bonding process, the diffusion layer was formed by the mutual diffusion of Zr and Nb, which was composed of (Zr, Nb) solid solution, and its thickness was constant with the increase of the Nb thickness. Secondary phases of Zr(Cr, Fe)2 and Zr(Fe, Nb)2 were observed in the diffusion layer near the Nb interlayer. The tensile strength of the joints was only 75 MPa at 760 ℃ and many unbonded areas existed. The tensile strength and elongation of the joints decreased slightly with the increase of Nb thickness, and reached the maximum of 450 MPa and 13.1%, respectively, with the 20 μm Nb interlayer. The fracture position was changed from the Zr-4 matrix (20 μm) to the diffusion layer (50 μm, 80 μm). After superheated steam corrosion of 400 ℃ and 10.3 MPa, obvious corrosion occurred at the diffusion layer of the Zr-4/Nb/Zr-4 joint. The maximum corrosion depth was 108.39 μm, and the tensile strength and elongation of the joints decreased to 415 MPa and 5.1%. The Zr(Fe, Nb)2 phases were found on the fracture surface.

  • [1]
    Yu J J, Wei Z H. Mechanisms of hydride nucleation, growth, reorientation and embrittlement in zirconium: a review[J]. Materials, 2023, 16: 2419. doi: 10.3390/ma16062419
    [2]
    Slobodyan M. Dissimilar welding and brazing of zirconium and its alloys: Methods, parameters, metallurgy and properties of joints[J]. Journal of Manufacturing Processes, 2022, 75: 928 − 1002. doi: 10.1016/j.jmapro.2022.01.026
    [3]
    Slobodyan M S. Arc welding of zirconium and its alloys: A review[J]. Progress in Nuclear Energy, 2021, 133: 103630. doi: 10.1016/j.pnucene.2021.103630
    [4]
    Slobodyan M. Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review[J]. Nuclear Engineering and Technology, 2021, 53(4): 1049 − 1078. doi: 10.1016/j.net.2020.10.005
    [5]
    钟建伟, 安军靖, 丁怀博, 等. Zr-Sn-Nb-Fe-Cr与Zr-Nb-Fe锆合金电阻点焊工艺及显微组织[J]. 焊接学报, 2021, 42(8): 82 − 90. doi: 10.12073/j.hjxb.20210305002

    Zhong Jianwei, An Junjing, Ding Huaibo, et al. Welding processes and microstructures of weld bead of Zr-Sn-Nb-Fe-Cr and Zr-Nb-Fe zirconium alloy[J]. Transactions of the China Welding Institution, 2021, 42(8): 82 − 90. doi: 10.12073/j.hjxb.20210305002
    [6]
    Lee S Y, Lee H J, Baek J H, et al. Microstructural and corrosion properties of Ti-to-Zr dissimilar alloy joints brazed with a Zr-Ti-Cu-Ni amorphous filler alloy[J]. Metals, 2021, 11: 192. doi: 10.3390/met11020192
    [7]
    Fang J, Qi Q, Sun L B, et al. Brazing SiC ceramic to Zircaloy-4 using Zr-Ni filler alloy: Microstructure, mechanical properties and irradiation behavior[J]. Journal of Nuclear Materials, 2022, 564: 153715. doi: 10.1016/j.jnucmat.2022.153715
    [8]
    Chen H, Long C, Wei T, et al. Effect of Ni interlayer on partial transient liquid phase bonding of Zr–Sn–Nb alloy and 304 stainless steel[J]. Materials & Design, 2014, 60: 358 − 362.
    [9]
    Srikanth V, Laik A, Dey G K, et al. Joining of stainless steel 304L with Zircaloy-4 by diffusion bonding technique using Ni and Ti interlayers[J]. Materials & Design, 2017, 126: 141 − 154.
    [10]
    Sun Z, Ma Y, He Y, et al. Phase transition induced low-temperature diffusion bonding of Zr-4 alloy using a pure Ti interlayer[J]. Journal of Alloys and Compounds, 2023, 947: 169387.
    [11]
    杨锋, 尉北玲, 王旭峰. 核级锆合金研究现状及我国核级锆材发展方向[J]. 金属世界, 2016(3): 24 − 28.

    Yang Feng, Wei Beiling, Wang Xufeng. Research advance and future direction of nuclear graded zirconium alloy [J]. Metal World, 2016(3): 24 − 28.
    [12]
    Yang Z W, Zhang F, Yang X, et al. Microstructure and mechanical properties of Zr-4 alloy and 316 stainless steel diffusion bonding joint using Nb/Ni composite interlayer[J]. Advanced Engineering Materials, 2023(25): 2300279.
    [13]
    陈鑫, 李中奎, 周军, 等. 合金元素对锆合金耐腐蚀性能的影响概述[J]. 热加工工艺, 2015, 44: 14 − 16.

    Chen Xin, Li Zhongkui, Zhou Jun, et al. Summarizing for effect of alloying elements on corrosion resistance of zirconium alloy [J]. Hot Working Technology, 2015, 44: 14 − 16.
    [14]
    Harte A, Griffiths M, Preuss M, et al. The characterization of second phases in the Zr-Nb and Zr-Nb-Sn-Fe alloys: A critical review[J]. Journal of Nuclear Materials, 2018, 505: 227 − 239. doi: 10.1016/j.jnucmat.2018.03.030
    [15]
    Aldeen A W, Chen Z W, Disher I A, et al. Growth kinetics of second phase particles in N36 zirconium alloy: Zr–Sn–Nb–Fe[J]. Journal of Materials Research and Technology, 2022, 17: 2038 − 2046. doi: 10.1016/j.jmrt.2022.01.142
    [16]
    焦馥杰. 低组配焊接接头的强度[J]. 山东工学院学报, 1982, 23: 37 − 63.

    Jiao Fujie. Strength of undermatching welded joint[J]. Journal of Shandong Institute of Technology, 1982, 23: 37 − 63.
    [17]
    Zhou B X, Yao M Y, Li Z K, et al. Optimization of N18 zirconium alloy for fuel cladding of water reactors[J]. Journal of Materials Science & Technology, 2012, 28: 606 − 613.
    [18]
    Yao M, Li S, Zhang X, et al. Effect of Nb on the corrosion resistance of Zr-4 alloy in superheated steam at 500 degreeC[J]. Acta Metallurgica Sinica, 2011, 47: 865 − 871.
    [19]
    吴悦, 陈兵, 林晓冬, 等. 90Nb-10Zr合金在500 ℃过热蒸气中的腐蚀行为[J]. 稀有金属材料与工程, 2021, 50: 4437 − 4444.

    Wu Yue, Chen Bing, Lin Xiaodong, et al. Corrosion behavior of 90Nb-10Zr alloy in 500 ℃ super-heated steam[J]. Rare Metal Materials and Engineering, 2021, 50: 4437 − 4444.
    [20]
    Dollins C C, Jursich M. A model for the oxidation of zirconium-based alloys[J]. Journal of Nuclear Materials, 1983, 113: 19 − 24. doi: 10.1016/0022-3115(83)90161-7
  • Related Articles

    [1]XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. Influence of welding thermal cycle on grain structure of 5083 aluminum alloy weld by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 27-33. DOI: 10.12073/j.hjxb.20240315001
    [2]XIAO Wenbo, HE Yinshui, YUAN Haitao, MA Guohong. Synchronous real-time detection of weld bead geometry and the welding torch in galvanized steel GAMW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 78-82. DOI: 10.12073/j.hjxb.20201021001
    [3]CUI Bing1,2, PENG Yun2, PENG Mengdu2, AN Tongbang2. Effects of weld thermal cycle on microstructure and properties of heataffected zone of Q890 processed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 35-39. DOI: 10.12073/j.hjxb.20150427004
    [4]LIU Haodong, HU Fangyou, CUI Aiyong, LI Hongbo, HUANG Fei. Experimental on thermal cycle of laser welding with ultrasonic processing across different phases[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 13-17.
    [5]LÜ Xiaochun, HE Peng, QIN Jian, DU Bing, HU Zhongquan. Effect of welding thermal cycle on microstructure and properties of intercritically reheated coarse grained heat affected zone in SA508-3 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 47-49.
    [6]WU Dong, LU Shanping, LI Dianzhong. Effect of welding thermal cycle on high temperature mechanical property of Ni-Fe base superalloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 69-72.
    [7]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. Designment of test program system for welding thermal cycle in weld zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 93-96.
    [8]HU Yanhua, CHEN Furong, XIE Ruijun, LI Haitao. In-situ detection of weld metal thermal cycle of 10CrMo910 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 105-107.
    [9]CHEN Yu-hua, WANG Yong. Numerical simulation of thermal cycle of in-service welding onto active pipeline based on SYSWELD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 85-88.
    [10]YAO Shang-wei, ZHAO Lu-yu, XU Ke, WANG Ren-fu. Effect of welding thermal cycle on toughness of continuous cast-ing steel center[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 97-100.
  • Cited by

    Periodical cited type(7)

    1. 赵忠华,吴海荣,谢洪志,张桐源,郭晶. 薄板钛合金激光焊接接头力学性能研究. 飞机设计. 2025(02): 66-69+80 .
    2. 吕泽阳,王宇宙,刘何意. 钛合金对接与角接氩弧焊缝性能研究. 冶金与材料. 2025(05): 73-75 .
    3. 冯栋,周卫涛,颉文峰. 焊接工艺对薄壁环形钛合金焊缝成形及承载能力的影响. 焊接. 2023(04): 55-59 .
    4. 乔永丰,雷玉成,姚奕强,王泽宇,朱强. 焊接方法对316L不锈钢焊缝抗辐照损伤性能的影响. 焊接学报. 2023(05): 77-83+94+133-134 . 本站查看
    5. 马寅,韩晓辉,李刚卿,杨志斌,宋东哲,靳月强. TC4钛合金激光-MIG复合焊接头组织性能. 电焊机. 2023(08): 93-97+114 .
    6. 曾俊谚,庄园,杨涛,钟玉婷,杨响明. 基于飞秒激光的钛合金表面微纳米结构制备及腐蚀行为. 焊接. 2023(08): 37-43 .
    7. 孙修圣. 钛管道K-TIG深熔焊工艺研究及应用. 压力容器. 2023(09): 23-30 .

    Other cited types(5)

Catalog

    Article views (114) PDF downloads (46) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return