Citation: | WU Jingwei, WANG Youyin, HOU Xirong, WANG Zhigang, CHE Wenbin, ZHANG Jianxiao, DUO Yuancai. Growth behavior of inter metallic compounds at N06200 nickel alloy and S32168 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 121-128. DOI: 10.12073/j.hjxb.20230427001 |
The evolution process of IMCs at the interface between N06200 nickel-base alloy and S32168 stainless steel TIG welded joint after post-weld heat treatment was analyzed. The formation type, sequence and growth kinetics model of IMCs at the interface were analyzed through the perspective of thermodynamics and kinetics. The results showed that with the increase of heat treatment temperature, the tensile strength of the welding joint increases firstly and then decreases. With the increasing of holding time, the tensile strength of the joint increased. The IMCs at the interface between nickel base alloy and stainless steel after welding heat treatment were mainly composed of NiFe phase, Ni2Cr phase, FeCr phase and Ni3Fe phase. The thickness of IMCs layer at the interface increase with the increasing of heat treatment temperature and holding time. The formation sequence of IMCs was NiFe→FeCr→Ni2Cr→Ni3Fe. The growth of IMCs was in line with parabolic law. The kinetic model of IMCs was W=1.725 × 10−13·
[1] |
周峰, 赵霞, 查向东, 等. 一种新型镍基耐蚀合金与304奥氏体不锈钢异种金属焊接接头的组织和力学性能[J]. 金属学报, 2014, 50(11): 1335 − 1342. doi: 10.11900/0412.1961.2014.00284
Zhou Feng, Zhao Xia, Zha Xiangdong, et al. Microstructure and mechanical properties of the welding joint of a new corrosion-resisting nickel-based alloy and 304 austenitic stainless steel[J]. Acta Metallurgica Sinica, 2014, 50(11): 1335 − 1342. doi: 10.11900/0412.1961.2014.00284
|
[2] |
宋建岭, 林三宝, 杨春利, 等. 镍基合金/不锈钢钨极惰性气体钎焊接头的特性[J]. 中国有色金属学报, 2008, 18(5): 834 − 839. doi: 10.3321/j.issn:1004-0609.2008.05.014
Song Jianling, Lin Sanbao, Yang Chunli, et al. Characteristics of tungsten inert gas brazing joints of nickel-based alloy and stainless steel[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(5): 834 − 839. doi: 10.3321/j.issn:1004-0609.2008.05.014
|
[3] |
李宁, 王刚, 王廷, 等. Inconel 718镍基合金与304不锈钢电子束焊接[J]. 焊接学报, 2019, 40(2): 82 − 85.
Li Ning, Wang Gang, Wang Ting, et al. Weldability of Inconel 718 and 304 stainless steel by electron beam welding[J]. Transactions of the China Welding Institution, 2019, 40(2): 82 − 85.
|
[4] |
黄嘉森, 蔡创, 刘致杰, 等. Inconel690镍基合金/SUS304不锈钢激光焊接接头组织与力学性能[J]. 光学学报, 2023, 43(10): 14 − 20.
Huang Jiasen, Cai Chuang, Liu Zhijie, et al. Microstructure and mechanical properties of laser welded Inconel690 nickel-based alloy/SUS304 stainless steel joints[J]. Acta Optica Sinica, 2023, 43(10): 14 − 20.
|
[5] |
武靖伟, 王志刚, 刘宝剑, 等. N06200镍基合金与S32168不锈钢TIG焊接微观组织与力学性能研究[J]. 压力容器, 2023, 40(6): 15 − 21. doi: 10.3969/j.issn.1001-4837.2023.06.003
Wu Jingwei, Wang Zhigang, Liu Baojian, et al. Microstructure and mechanical properties of TIG welded joint of N06200 nickel base alloy and S32168 stainless steel[J]. Pressure Vessel Technology, 2023, 40(6): 15 − 21. doi: 10.3969/j.issn.1001-4837.2023.06.003
|
[6] |
Zhang X Y, Song R G, Sun B, et al. Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23: 819 − 826. doi: 10.1007/s12613-016-1296-y
|
[7] |
程俊义, 熊江英, 刘朝峰, 等. 一种新型第三代镍基粉末高温合金亚固溶热处理对调控γ"相分布的研究[J]. 稀有金属材料与工程, 2023, 52(2): 699 − 709. doi: 10.12442/j.issn.1002-185X.20220067
Cheng Junyi, Xiong Jiangying, Liu Zhaofeng, et al. Sub-solvus heat treatment study on the γ" distribution of novel nickel-based superalloy[J]. Rare Metal Materials and Engineering, 2023, 52(2): 699 − 709. doi: 10.12442/j.issn.1002-185X.20220067
|
[8] |
金玉花, 甘瑞根, 邵庆丰, 等. 焊后退火Al-Mg界面金属间化合物生长行为[J]. 焊接学报, 2017, 38(8): 69 − 71. doi: 10.12073/j.hjxb.20150808001
Jin Yuhua, Gan Ruigen, Shao Qingfeng, et al. Growth behaviour of Al-Mg intermetallics during post weld annealing treatment[J]. Transactions of the China Welding Institution, 2017, 38(8): 69 − 71. doi: 10.12073/j.hjxb.20150808001
|
[9] |
张忠科, 武靖伟, 赵华夏. 焊后热处理对钛/铝FSB接头组织及性能的影响[J]. 中国有色金属学报, 2020, 30(4): 739 − 749. doi: 10.11817/j.ysxb.1004.0609.2020-35762
Zhang Zhongke, Wu Jingwei, Zhao Huaxai. Effect of annealing treatment on interfacial microstructure and properties of Ti/Al FSB joint[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(4): 739 − 749. doi: 10.11817/j.ysxb.1004.0609.2020-35762
|
[10] |
申中宝, 邱然锋, 石红信, 等. 铝/钢固态焊接合界面金属间化合物生长机制[J]. 焊接学报, 2019, 40(6): 58 − 63. doi: 10.12073/j.hjxb.2019400155
Shen Zhongbao, Qiu Ranfeng, Shi Hongxing, et al. Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel[J]. Transactions of the China Welding Institution, 2019, 40(6): 58 − 63. doi: 10.12073/j.hjxb.2019400155
|
[11] |
唐超兰, 郭校峰, 许秋平, 等. 铝钢复合界面金属间化合物生长行为[J]. 材料科学与工程学报, 2018, 36(5): 713 − 719.
Tang Chaolan, Guo Xiaofeng, Xu Qiuping, et al. Research on growth behavior of intermetallic compounds at Al-Steel bonding interface[J]. Journal of Materials Science and Engineering, 2018, 36(5): 713 − 719.
|
[12] |
马恒波, 任柯旭, 邱然锋, 等. 铜/铝固态界面金属间化合物的生长行为[J]. 材料热处理学报, 2019, 40(7): 60 − 67.
Ma Hengbo, Ren Kexu, Qiu Ran, et al. Growth behavior of inter metallic compounds at Cu /Al solid state interface[J]. Transactions of Materials and Heat Treatment, 2019, 40(7): 60 − 67.
|
[13] |
余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16 − 28. doi: 10.11900/0412.1961.2020.00200
Yu Lei, Cao Rui. Welding crack of Ni-based alloys: A Review[J]. Acta Metallurgica Sinica, 2021, 57(1): 16 − 28. doi: 10.11900/0412.1961.2020.00200
|
[14] |
王诗洋, 刘士伟, 侯星宇, 等. 焊丝成分对镍基高温合金TIG焊焊接性的影响[J]. 焊接学报, 2023, 44(3): 31 − 36,60. doi: 10.12073/j.hjxb.20220401001
Wang Shiyang, Liu Shiwei, Hou Xingyu, et al. Effect of wire composition on weldability of a Ni-based superalloy welded by TIG method[J]. Transactions of The China Welding Institution, 2023, 44(3): 31 − 36,60. doi: 10.12073/j.hjxb.20220401001
|
[15] |
Wang Y, Wang Y T, Li R, et al. Hall-petch relationship in selective laser melting additively manufactured metals: using grain or cell size[J]. Journal of Central South University, 2021, 28(4): 1043 − 1057. doi: 10.1007/s11771-021-4678-x
|
[16] |
边书, 张玉妥, 王承志. Fe-Cr-Ni系相图计算[J]. 沈阳理工大学学报, 2011, 30(6): 17 − 21. doi: 10.3969/j.issn.1003-1251.2011.06.004
Bian Shu, Zhang Yutuo, Wang Chenzhi. Phase diagram calculation for Fe-Cr-Ni System[J]. Journal of Shenyang Ligong University, 2011, 30(6): 17 − 21. doi: 10.3969/j.issn.1003-1251.2011.06.004
|
[17] |
Zhao Y Y, Li J Y, Qiu R F, et al. Growth characterization of intermetallic compound at the Ti/Al solid state interface[J]. Materials, 2019, 12(3): 472 − 482. doi: 10.3390/ma12030472
|
[18] |
吴铭方, 司乃潮, 王敬, 等. 铁/铝扩散偶界面反应层生长机理分析[J]. 焊接学报, 2011, 32(5): 29 − 32.
Wu Mingfang, Si Naichao, Wang Jing, et al. Analysis on growth mechanism on interfacial interlayer on Fe/Al couple[J]. Transac tions of the China Welding Institution, 2011, 32(5): 29 − 32.
|
[19] |
王星星, 杜全斌, 彭进, 等. AgCuZnSn钎料的热力学特性[J]. 中国有色金属学报, 2018, 28(6): 1159 − 1167.
Wang Xingxing, Du Quanbin, Peng Jin, et al. Thermodynamics characteristics of AgCuZnSn brazing filler metals[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(6): 1159 − 1167.
|
[20] |
韩丽青, 王自东, 龙斌, 等. 钛/不锈钢焊接界面金属间化合物的生成动力学[J]. 材料热处理学报, 2011, 32(2): 63 − 64.
Han Liqing, Wang Zidong, Long Bin, et al. Formation kinetics of interfacial intermetallic compounds of TA2/316L welding joints[J]. Transactions of Materials and Heat Treatment, 2011, 32(2): 63 − 64.
|
[21] |
To S, Zhu Y H, Lee W B. Effects of cutting depth on the surface microstructure of a Zn-Al alloy during ultra-precision machining[J]. Applied Surface Science, 2008, 254(15): 1559 − 1564.
|
[1] | HU Guangxu, GAO Jing, LIU Yang, DING Renjie, GONG Qingtao. A semi-physical and semi-intelligent heat source model based on keyhole heat transfer and energy attenuation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 89-97. DOI: 10.12073/j.hjxb.20240527002 |
[2] | KONG Jianshou, QIAO Fei, LIU Siyi. Computer simulation of weld formation based on Bezier curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 37-42. DOI: 10.12073/j.hjxb.2018390118 |
[3] | HE Peng, ZHANG Ling. Development of intelligent brazing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 124-128. DOI: 10.12073/j.hjxb.20170429 |
[4] | HUANG Min, LI Guoai, ZHANG Kun, WANG Shaohua. Laser welding characteristics of 2A97 Al-Li alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 100-104. |
[5] | YAO Wei, GONG Shuili, STEVE Shi. Twin spot laser welding characteristics of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 108-112. |
[6] | CAO Biao, YE Wei-yuan, HUANG Zeng-hao, ZENG Min. Intelligent quality monitor of inverted resistance spot welding of wire to phosphor-copper sheet in relay manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 47-50,54. |
[7] | CHEN Shan-ben, LIN Tao, CHEN Wen-jie, QIU Tao. Concepts and technologies on intelligentized welding manufacturing engineering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 124-128. |
[8] | ZHAGN Xu-Dong, CHEN Wu-zhu, LIU Chun, GUO Jing. Coaxial monitoring and penetration control in CO2 laser welding (Ⅰ)——Penetration status characteristics and coaxial monitoring[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 1-4. |
[9] | PIAO Yong-Jie, LIN Tao, QUI Tao, CHEN San-ben. Application of Multi-Agent Systems in Welding Flexible Manufacturing System[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 87-90,96. |
[10] | WANG Bing, LIN Tao, CHEN Shan-ben. Knowledge Acquiring in Intelligent Detecting System for Lack of Weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 29-32. |