Advanced Search
HU Guangxu, GAO Jing, LIU Yang, DING Renjie, GONG Qingtao. A semi-physical and semi-intelligent heat source model based on keyhole heat transfer and energy attenuation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 89-97. DOI: 10.12073/j.hjxb.20240527002
Citation: HU Guangxu, GAO Jing, LIU Yang, DING Renjie, GONG Qingtao. A semi-physical and semi-intelligent heat source model based on keyhole heat transfer and energy attenuation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 89-97. DOI: 10.12073/j.hjxb.20240527002

A semi-physical and semi-intelligent heat source model based on keyhole heat transfer and energy attenuation

More Information
  • Received Date: May 26, 2024
  • Available Online: May 21, 2025
  • At present, the laser welding heat source model is mainly loaded in the form of energy density distribution in geometric regions, and its accuracy is closely related to the geometric region size of energy distribution. However, it lacks a mapping relationship with laser process parameters and physical mechanisms, making it difficult to use for constructing digital twin technology for laser process equipment. In response to this issue, a semi-physical and semi-intelligent heat source model based on laser welding keyhole heat transfer and energy attenuation was proposed. Firstly, based on the physical mechanism of heat transfer in laser welding keyhole formation, the nonlinear geometric region of laser energy distribution was determined through algorithms; Then, based on the absorption rate attenuation phenomenon of the laser along the depth direction of the material, a knowledge-based nonlinear attenuation curve parameter was defined to express the attenuation law of laser energy. By combining the above two methods, a semi-physical and semi-intelligent heat source model was established. The results verify the rationality and accuracy of the heat source model through experiments and simulations of 316L stainless steel laser welding. On this basis, the mapping relationship between heat source model parameters and laser power, defocus, and welding speed is explored, laying a foundation for the digital twin implementation of laser welding technology.

  • [1]
    AMMAR Elsheikh, MOHAMED A E Omer, ALI Basem, et al. Recent advances and future prospects of laser welding technology for polymeric materials: A review[J]. Journal of Materials Research and Technology, 2025, 25: 7417 − 7440.
    [2]
    IMRE Timár, ISTVÁN W árpád. Optimal design of the fillet weld fastening the wind turbine column[J]. China Welding, 2024, 33(3): 39 − 43.
    [3]
    GAO Q Y, BU H C, LING W L, et al. Effect of defocusing amount on morphology and microstructure of 8-mm-thick Ti-6Al-4 V laser deep penetration welded joint[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5-6): 3747 − 3756. doi: 10.1007/s00170-021-08450-z
    [4]
    陈鑫, 杨立飞, 王佳宁,等. 6061-T6铝合金薄板双脉冲MIG焊动态组合热源模型[J]. 湖南大学自然科学版, 2022, 49(12): 83 − 91.

    CHEN Xin, YANG Lifei, WANG Jianing, et al. Dynamic combined heat source model for double pulse MIG welding of 6061-T6 aluminum alloy thin plate[J]. Hunan University Natural Science Edition, 2022, 49(12): 83 − 91.
    [5]
    乔及森, 芮正雷, 高振云,等. 组合热源模型下焊剂片约束电弧焊温度场预测[J]. 兰州理工大学学报, 2020, 46(4): 27 − 32. doi: 10.3969/j.issn.1673-5196.2020.04.006

    QIAO Jisen, RUI Zhenglei, GAO Zhenyun, et al. Prediction of temperature field in flux sheet constrained arc welding under combined heat source model[J]. Journal of Lanzhou University of Technology, 2020, 46(4): 27 − 32 doi: 10.3969/j.issn.1673-5196.2020.04.006
    [6]
    孙振邦, 刘乐乐, 童嘉晖, 等. 基于改进热源模型的铝合金MIG焊数值分析[J]. 焊接学报, 2023, 44(2): 111 − 116.

    SUN Zhenbang, LIU Lele, TONG Jiahui, et al. Numerical analysis of aluminum alloy MIG welding based on improved heat source model[J]. Transactions of The China Welding Institution, 2023, 44(2): 111 − 116.
    [7]
    张新瑞, 王晨, 雷正龙, 等. 薄壁舱体构件电子束焊接变形模拟分析与优化[J]. 焊接, 2024(5): 1 − 8.

    ZHANG Xinrui, WANG Chen, LEI Zhenglong, et al. Simulation analysis and optimization of deformation during electron beam welding of thin-walled cabin components[J]. Welding Joining, 2024(5): 1 − 8.
    [8]
    KORINKO P S ,MALENE S H. Considerations for the weldability of types 304L and 316L stainless steel[J]. Practical Failure Analysis, 2001, 1(4): 61 − 68.
    [9]
    Mazumder J ,Steen W M. Heat transfer model for cw laser material processing[J]. Journal of Applied Physics, 1980, 51(2): 941 − 947. doi: 10.1063/1.327672
    [10]
    车用高强钢光纤激光对接焊工艺研究[D]. 长沙:湖南大学, 2011.

    Research on fiber laser docking welding process of high strength steel for vehicles [D]. Changsha: Hunan University, 2011.
    [11]
    CHEN S A, WU Y F, LI Y, et al . Study on 2219 Al-Cu alloy T-joint used dual laser beam bilateral synchronous welding: Parameters optimization based on the simulation of temperature field and residual stress[J]. Optics & Laser Technology, 2020, 132: 106481 − 106498.
    [12]
    韩立军. 汽车车身激光焊接技术发展与应用[J]. 电焊机, 2020, 50(7): 64 − 73.

    HAN Lijun. Development and application of laser welding technology for automobile body[J]. Electric Welding Machine, 2020, 50(7): 64 − 73.
    [13]
    杨兴亚. 基于近似能量衰减匙孔模型的激光焊熔池形貌专家系统研究[D]. 哈尔滨:哈尔滨商业大学, 2023.

    YANG Xingya. Research on laser welding pool morphology expert system based on approximate energy attenuation keyhole model [D]. Harbin: Harbin University of Commerce, 2023.
    [14]
    PIEKARSKA W, KUBIAK M. Theoretical investigations into heat transfer in laser-welded steel sheets[J]. Journal of Thermal Analysis and Calorimetry, 2012, 110(1): 159 − 166. doi: 10.1007/s10973-012-2486-0
  • Related Articles

    [1]SHEN Faming, CUI Yanfeng, SHAO Tongge, LI Yongjun, HAN Yonghua, LI Rui, YANG Guang. Tailored deformation and properties of cast aluminum alloy ZL114A repaired by laser deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 121-128. DOI: 10.12073/j.hjxb.20230506001
    [2]TIAN Rui, JIANG Zhe, LIU Jun, LIU Weiqing, CHI Yuanqing, ZHANG Yongkang. Formability, microstructure and mechanical properties of nano-treated Al-Zn-Mg-Cu alloy fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 110-120. DOI: 10.12073/j.hjxb.20231216001
    [3]WU Tao, TAN Zhen, WANG Liwei, LIANG Zhimin, WANG Dianlong. Microstructure and mechanical properties of Al-Mg-Cu alloy fabricated by heterogeneous twin-wire indirect arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 64-70. DOI: 10.12073/j.hjxb.20230305003
    [4]GUO Lixiang, LI Xiaoping, LIU Xiao, WANG Bin, WANG Zhaungzhuang. Microstructure and corrosion resistance of 7075 aluminum alloy welded by TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 104-112. DOI: 10.12073/j.hjxb.20210811001
    [5]HE Peng, BAI Xingwang, ZHOU Xiangman, ZHANG Haiou. Microstructure and properties of 6061 aluminum alloy by MIG wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 50-54, 60. DOI: 10.12073/j.hjxb.20210608001
    [6]PEI Longji, HU Zhiyue, QU Long, JIANG Shuying, ZHANG Junli. Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 90-96. DOI: 10.12073/j.hjxb.20210427002
    [7]ZHAO Pengkang, TANG Cheng, PU Zunyan, LI Yan, LI Shujuan. Microstructure and tensile properties of 5356 aluminum alloy by TIG wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 65-70, 77. DOI: 10.12073/j.hjxb.20190925002
    [8]JIA Hua, LIU Zhengjun, LI Meng, ZHANG Kun. Effect of ceramic phase on microstructure and mechanical properties of ferrous matrix composite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 122-127. DOI: 10.12073/j.hjxb.2019400247
    [9]ZHANG Zhaodong, ZENG Qingwen, LIU Liming, SUN Chengshuai. Forming regularity of aluminum alloy formed by laser induced MIG arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 7-12. DOI: 10.12073/j.hjxb.2019400201
    [10]QI Xiuling, LIU Zhengjun, SU Yunhai, QU Jiaxing. Effects of post weld heat treatments on microstructure and mechanical properties of AZ91 magnesium alloy joints welded by TIG method with adding magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 89-92.
  • Cited by

    Periodical cited type(1)

    1. 徐虹,王淳,姜博,李丽. 航空发动机总压受感部薄壁不锈钢管材钎焊工艺优化. 电子产品可靠性与环境试验. 2024(S1): 86-92 .

    Other cited types(0)

Catalog

    Article views (22) PDF downloads (6) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return